首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New rice lines, restorer line RB207 and maintainer line Yewei B, with better agronomic traits were separately developed from variant progeny of R207 (rice restorer line) and V20B (rice maintainer line) through transformation of genomic DNA ofEchinochloa crusgalli (C4 plant) andOryza minuta, respectively. The phenotypes of the variant lines were apparently different from those of the receptors. Yewei B had stronger tolerance to high temperature than did V20B. The number of spikelets per panicle and the 1000-grain weight of RB207 increased by 40% over those of R207. The results of amplified fragment length polymorphism (AFLP) analysis indicated that the polymorphism rates were both 4.4% between genomes of the variant lines and their receptors. Results demonstrated that special DNA segments fromE. crusgalli andO. minuta might integrate into the genome of cultivated rice and could be stably passed on. The study further shows that transformation of genomic DNA of distant relatives is an effective approach for creating new rice germ plasm. These authors contributed equally to this work.  相似文献   

2.
BT型细胞质雄性不育水稻及其三系的线粒体DNA研究   总被引:2,自引:0,他引:2  
用RAPD技术对BT型水稻胞质雄性不育系秀A及其保持系秀B、恢复系湘晴以及杂种F1代的线粒体DNA进行了比较分析。结果表明不育系与其保持系间存在显著差异;不育系与其F1之间mtDNA也存在差异。在引物OPJ-08的扩增产物中,秀A扩增出一条分子量为800bp的多态性片段,在引物OPK-10的扩增产物中,杂种F1扩增出一条分子量为900bp的片段。把这两片段回收、克隆并制备探针,OPJ-08800的Southern杂交结果显示不育系与其F1杂交图谱存在多态性;OPK-10900的Suthern杂交结果显示不育系与其保持系同存在差异。推测这两片段与育性可能有一定的联系。  相似文献   

3.
4.
Heterosis has helped to increase rice yield in F1 hybrids by 15–20% beyond the level of inbred semidwarf varieties. For stable yield performance rice hybrids must also possess genetic resistance to biotic stresses. One of these, stem borer, reduces the expected yield of hybrid rice. The truncated synthetic cryIA(b) gene from Bacillus thuringiensis is known to be effective in controlling stem borer. The development of transformation techniques has provided the technology for incorporating this bacterial gene into the rice genome, which has not been possible by conventional breeding methods. We have introduced a new approach of using a transgenic maintainer line for developing an insect-resistant hybrid rice. An elite IRRI maintainer line (IR68899B) has been transformed with the cryIA(b) gene driven by the 35S constitutive promoter using the biolistic method. The integration and expression of the cryIA(b) gene could be demonstrated through Southern and Western blot analyses that have been carried out so far up to the T2 generations. Insect bioassay data showed an enhanced resistance to yellow stem borer in the Bt + transgenic plants. This is the first report of the development of a transgenic maintainer line for use in hybrid rice improvement. Received: 17 December 1997 / Revision received: 23 June 1998 / Accepted: 25 September 1998  相似文献   

5.
对水稻BT型和WA型细胞质的雄性不育系,相应保持系和恢复系以及杂种的mtDNA用12个线粒体探针进行了RFLP分析,结果如下(1)BT型和WA型不育系的mtDNA在组织结构上存在差异;(2)不育系的mtDNA与其保持系间存在显著差异,推测mtDNA与水稻的cms有关;(3)atp9探针检测到WA型不育系与F1之间的多态性,Frag36探针检测到BT型不育系与F1之间的多态性,Frag9探针检测到WA型和BT型不育系与其F1之间的多态性,证明核恢复基因影响mtDNA的结构;(4)对mtDNA的结构变异与细胞质雄性不育的关系进行了分析与探讨.  相似文献   

6.
The value of genome-specific repetitive DNA sequences for use as molecular markers in studying genome differentiation was investigated. Five repetitive DNA sequences from wild species of rice were cloned. Four of the clones, pOm1, pOm4, pOmA536, and pOmPB10, were isolated from Oryza minuta accession 101141 (BBCC genomes), and one clone, pOa237, was isolated from Oryza australiensis accession 100882 (EE genome). Southern blot hybridization to different rice genomes showed strong hybridization of all five clones to O. minuta genomic DNA and no cross hybridization to genomic DNA from Oryza sativa (AA genome). The pOm1 and pOmA536 sequences showed cross hybridization only to all of the wild rice species containing the C genome. However, the pOm4, pOmPB10, and pOa237 sequences showed cross hybridization to O. australiensis genomic DNA in addition to showing hybridization to the O. minuta genomic DNA.  相似文献   

7.
The successful transfer of a marker gene (hpt gene) from Brassica nigra into B. napus via direct gene transfer was demonstrated. Total DNA was isolated from a hygromycin-resistant callus line, which contained three to five copies of the hpt gene. This line had been produced via direct gene transfer with the hygromycin resistance-conferring plasmid pGL2. The treatment of B. napus protoplasts with genomic DNA of B. nigra (HygR) resulted in relative transformation frequencies of 0.1–0.4%. Similar transformation rates were obtained in direct gene transfer experiments using B. napus protoplasts and plasmid pGL2.  相似文献   

8.
水稻抗稻瘟病基因Pi25是一个遗传传递能力强的广谱抗性基因。本研究以携带抗稻瘟病基因Pi25的BL27为抗源供体,与优质、配合力强、感稻瘟病的水稻保持系臻达B为受体亲本进行杂交、回交创制水稻抗病保持系新种质,再与臻达A测交和回交进行不育系转育,结合分子标记辅助选择和农艺性状筛选,获得3个抗性基因纯合、农艺性状和开花习性均与臻达A相似的改良不育系株系。利用福建省近年来致病性代表的22个稻瘟病菌株对3个改良不育系及其15个杂交种进行抗性鉴定,3个改良不育系的抗性频率为95.45%~100%,15个杂交种的抗性频率均达75%以上,而原始对照臻达A及其杂交种的抗性频率仅为54.55%和40.91%~63.64%。自然病圃诱发鉴定表明,3个改良不育系的叶瘟和穗颈瘟均为0级,表现高抗,而对照臻达A的叶瘟为5级,穗颈瘟为7级,表现感病;15个杂交种均表现良好的稻瘟病抗性。进一步分析比较15个杂交种的产量、农艺性状和稻米品质表现,结果表明臻达A-Pi25-3改良不育系的综合性状表现最优,继续回交转育,于2015年育成了稻瘟病抗性强、配合力好、群体整齐和性状稳定的不育系,命名为157A。研究表明,抗稻瘟病基因Pi25不仅在水稻不育系臻达A的遗传背景下的抗性表达完全,且在不同水稻恢复系测交种的背景下同样表现出较高水平的抗性,说明抗性基因Pi25对不育系稻瘟病改良的效果明显。创制的新不育系157A的稻瘟病抗性显著提高,还基本保留了原来不育系高配合力等优良特性,为选育高产、优质、抗病杂交稻新品种提供了不育系新种质。  相似文献   

9.
Pressure is expected to be an important parameter to affect characteristics of matters and control rate and equilibrium of chemical reactions. As a fundamental thermodynamic variable, it also has effects on bio-macromolecules and a lot of physiological an…  相似文献   

10.
龙文波  栾丽  王兴  刘玉花  涂升斌  孔繁伦  何涛 《遗传》2007,29(4):462-470
以高结实率的同源四倍体水稻恢复系TP-4和D明恢63及优良保持系D46B为材料进行细胞遗传学研究。所有四倍体材料的染色体组成均为2n = 48, 这与有丝分裂的结果一致。恢复系TP-4和D明恢63及保持系D46B的中期Ⅰ单价体和三价体的比例都很低, 配对染色体的比率在99%以上, 具有优良的细胞学特征。恢复系TP-4和D明恢63在中期Ⅰ四价体频率分别为2.00/PMC和2.26/PMC, 而保持系D46B在中期Ⅰ四价体频率为6.00/PMC, 极显著地高于恢复系品系因而具有更好的染色体配对性质; 后期Ⅰ保持系D46B的染色体滞后频率为10.62%, 远低于恢复系材料TP-4的19.44%和D明恢63的23.14%, 接近二倍体对照明恢63的7.30%水平; 末期Ⅰ保持系D46B具有比恢复系更低频率的微核数而末期ⅡD46B的正常四分小孢子比率不但高于恢复系品系甚至高于二倍体对照。相关分析表明后期Ⅰ染色体滞后细胞比率同末期Ⅰ异常细胞比率呈极显著的正相关, 推测后期Ⅰ染色体分离和末期Ⅰ微核形成可能是由相同的显性单基因或主效基因控制。  相似文献   

11.
将T4 RNA连接酶和AFLP技术特点相结合构建了适于mtRNA的差异显示方法 ,并比较了水稻 (OryzasativaL .)红莲型细胞质雄性不育系、保持系和杂种一代mtRNA的差异。在 4组引物对的选择扩增产物中共找到 6个差异片段 ,其中差异条带DTA为不育系仅有 ,条带DAB为不育系和保持系特有 ,而条带DBF1、DBF2 、DBF3 、DBF4 为保持系和F1杂种共有。这表明水稻红莲型不育系粤泰A与杂种一代泰优 2号mtRNA的差异大于保持系粤泰B和杂种一代泰优 2号mtRNA的差异。Northern杂交证实条带DTA在不育系、保持系和杂种一代的转录确有差异 ,表明它与红莲型细胞质雄性不育有关。条带DTA全长 2 5 9bp ,尽管未发现有同源序列和新的开放阅读框 ,但它可作为探针从cDNA文库中筛选全基因序列 ,进而寻找与细胞质雄性不育有关的开放阅读框架。  相似文献   

12.
13.
Summary DNA from three families of rice plants selected in Northern China (each comprising the male sterile, the restorer, the hybrid F1 and the maintainer lines) has been extracted and amplified by PCR with different random DNA primers (RAPD analysis). Then, DNA has been analysed by agarose gel electrophoresis and DNA bands scored as present or absent. The generated matrices are reproducible and amenable for identification of each single plant line. Thus, RAPD fingerprinting of the inbred parental lines and of the resulting hybrid is proposed as a convenient tool for the identification, protection and parentage determination of plant hybrids. Furthermore, by offering a molecular tool to verify the degree of dissimilarity between the parental lines, the RAPD analysis may also be used to search for new parental combinations.  相似文献   

14.
红莲型杂交稻(红莲2号)及其骨干亲本的RAPD分析与鉴定   总被引:4,自引:0,他引:4  
利用RAPD技术,从248个随机寡核苷酸引物(10-mer)中筛出18个引物对红莲型杂交稻组合红莲2号及其亲本(T-07A、T-07B、YD6-05),另6个红莲型胞质不育系的骨干恢复和汕优63及其亲本共14份水稻材料进行分析。共检测到173个多态性标记。聚类分析结果表明:不育系与保持系间因核背景相似,遗传差异很小;杂种(F1)的基因型更倾向于恢复系;恢复系与保持系间遗传距离的相对较大,但各恢复系之间的遗传距离较小。利用这些标记能有效地地区交组合中不育系,保持系、恢复系和杂种(F1)。  相似文献   

15.
16.
Wan C  Li S  Wen L  Kong J  Wang K  Zhu Y 《Plant cell reports》2007,26(3):373-382
One of the cytoplasmic male sterility (CMS) types used for hybrid rice (Oryza sativa L.) production in China is the Honglian (HL)-CMS. Previous studies suggested that pollen abortion of the sterile plants was resulted from a special programmed cell death (PCD) program started at meiosis in the microspores. To elucidate the molecular basis of the pollen abortion, we compared the biochemical and physiological properties such as content of reactive oxygen species (ROS), ATP, NADH, total glutathione and ascorbate acid, the activities of dehydroascrbate reductase, glutathione reductase, ascorbate peroxides and superoxide dismutase, and the integrity of mitochondrial genome DNA isolated from an HL-CMS line, Yuetai A and its maintainer line, Yuetai B. Our results indicated that the mitochondria of the HL-CMS line suffered from a serious oxidative stress during microspores development. Oxidative stress induced by abnormal increased ROS at meiosis stage resulted in the depletion of ATP and NADH, and the degradation of mitochondrial genomic DNA. This suggests that the presence of redox signal originated in mitochondria affects the rest of the cell. Therefore, it is possible that the abortion of premature microspores in HL-CMS line is induced by the chronic oxidative stress in mitochondria in the early stage of pollen development.  相似文献   

17.
The SR protein B52/SRp55 is essential for Drosophila development.   总被引:11,自引:3,他引:8       下载免费PDF全文
B52, also called SRp55, is a 52-kDa member of the Drosophila SR protein family of general splicing factors. Escherichia coli-produced B52 is capable of both activating splicing and affecting the alternative splice site choice in human in vitro splicing reactions. Here we report the isolation of a B52 null mutant generated by remobilizing a P element residing near the B52 gene. The resulting deletion, B52(28), is confined to the B52 gene and its neighbor the Hrb87F gene. Second-instar larvae homozygous for the deletion are deficient in both B52 mRNA and protein. The B52 null mutant is lethal at the first- and second-instar larval stages. Germ line transformation of Drosophila flies with B52 genomic DNA rescues this lethality. Thus, B52 is an essential gene and has a critical role in Drosophila development. Larvae deficient in B52 are still capable of splicing the five endogenous pre-mRNAs tested here, including both constitutively and alternatively spliced genes. Therefore, B52 is not required for all splicing in vivo. This is the first in vivo deficiency analysis of a member of the SR protein family.  相似文献   

18.
紫稻(Oryza sativa L.)细胞质雄性不育系紫稻A是本实验室构建的新型细胞质雄性不育系。本研究使用PCR、RT-PCR、DNA测序等技术,得到了紫稻细胞质雄性不育水稻不育系(樱香A)及其保持系(樱香B)线粒体atp6基因转录本cDNA序列。通过与基因组序列比对发现:樱香Aatp6cDNA序列中,没有发生RNA编辑;而樱香Batp6 cDNA序列中有16个编辑位点,在樱香B cDNA序列16个编辑位点位于15个密码子中,所编码的氨基酸均发生改变:在1003位点由C替换为T,导致原来编码谷氨酰胺密码子(CAA)成为终止密码子(TAA),保证atp6 mRNA编码一个正常的ATP6多肽;而由于没有发生RNA编辑,樱香A mRNA就不能翻译成正常的多肽。研究表明,RNA编辑在合成正常的ATP6多肽的过程中具有至关重要的作用,同时也说明RNA编辑可能与细胞质雄性不育相关。  相似文献   

19.
Summary Mitochondrial DNA was isolated from leaf tissue of both the cytoplasmic male sterile line of Indica rice variety V41, which carries wild abortive (WA) cytoplasm, and from the corresponding maintainer line. In addition to the main mitochondrial DNA, four small plasmid-like DNA molecules were detected in both the male sterile and fertile lines. Restriction analysis of total mitochondrial DNA from the male sterile and fertile lines showed DNA fragments unique to each. Our findings suggest that the four small mitochondrial DNA (mtDNA) molecules are conserved when WA cytoplasm is transferred into different nuclear backgrounds. However, there is no simple correlation between the presence/ absence of small mitochondrial DNA molecules and the expression of WA cytoplasmic male sterility (CMS).  相似文献   

20.
The transformation of distally related genomic DNAs into plant was proposed as a novel technique to breed new cultivars. For example, a restorer rice line, RB207, was successfully developed and stabilized through the transformation of genomic DNAs of Echinochloa crusgalli (E. crusgalli) into a rice line, R207. Although the phenotypes of this variant line are apparently different from its receptor, the molecular bases are not elucidated yet. Herein, we have systematically studied the differential proteomes from the tissues of E. crusgalli, R207, and RB207 in an attempt to find an explanation regarding the phenotypic changes of RB207. The 2-DE method was employed to separate the leaf and embryo proteins of these plants followed by protein identification with mass spectrometry. In the leaf, 953 +/- 15, 1084 +/- 11, and 1091 +/- 11 silver-stained spots were detected, whereas in the embryo, 986 +/- 3, 884 +/- 10, and 892 +/- 14 spots were found from E. crusgalli, R207, and RB207, respectively. In comparison to the 2-DE images of the two rice lines, which showed many similarities, the ones of the E. crusgalli and rice were found to be so different that they were incomparable. There were some differentially expressed 2-DE spots between the two rice cultivars, 72 in leaf and 53 in embryo, respectively. The results of protein identification suggested that, regardless of leaves or embryos, none of the E. crusgalli genes were encoded in the new rice cultivar, RB207. The fact that 60% of the differentially expressed spots between R207 and RB207, however, were verified as the proteins involved in metabolism and photosynthesis makes a rather convincing argument that the DNA fragments transferred from E. crusgalli to rice are responsible for exerting the unknown influence to the expression of rice genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号