首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have generated by mutagenesis eight differentiation-defective sublines from three murine embryonal carcinoma (EC) cell lines. These mutants grossly resemble parental cells in the absence of inducers of differentiation. Based upon response to retinoic acid (RA) or hexamethylenebisacetamide (HMBA), the mutants can be grouped into three types: (a) RA-selected cells that lack cellular RA binding protein (cRABP) activity and fail to differentiate in response to RA or HMBA; (b) RA- or HMBA-selected cells that possess cRABP but differentiate poorly, if at all, in the presence of RA or HMBA; and (c) cells originally selected for lack of response to HMBA but which retain cRABP and the ability to differentiate in response to RA.  相似文献   

2.
3.
In five lines of mouse embryonal carcinoma cells, PCC3/A1, PCC4, PCC4/Aza-R1, and F9, collagen synthesis was examined by immunofluorescence reaction using specific antibodies directed against collagen. All the embryonal carcinoma cell lines showed type IV collagen, and PCC7-S/Aza-R1 revealed the additional presence of type III collagen. When the F9 and PCC3/A1 EC cells were treated with retinoic acid and dibutyryl-cAMP, they differentiated into morphologically different cellular types. These cellular types showed new types of collagen. Thus, in treated F9 cells, type I, type III, and type V collagen were detected and in treated PCC3/A1 cells, type III and type V collagen were detected. In two established cellular strains, PYS-2 corresponding to parietal endoderm and 3TDM-1 corresponding to trophoblastoma, collagen was identified by immunological reaction and electrophoretic mobility. The trophoblastoma cell line was characterized by the production of type I, type III, and type IV collagen, whereas endodermal PYS-2 revealed type IV collagen.  相似文献   

4.
Dickkopf‐3 (Dkk‐3) and Dkkl‐1 (Soggy) are secreted proteins of poorly understood function that are highly expressed in subsets of neurons in the brain. To explore their potential roles during neuronal development, we examined their expression in Ntera‐2 (NT2) human embryonal carcinoma cells, which differentiate into neurons upon treatment with retinoic acid (RA). RA treatment increased the mRNA and protein levels of Dkk‐3 but not of Dkkl‐1. Ectopic expression of both Dkk‐3 and Dkkl‐1 induced apoptosis in NT2 cells. Gene silencing of Dkk‐3 did not affect NT2 cell growth or differentiation but altered their response to RA in suspension cultures. RA treatment of NT2 cells cultured in suspension resulted in morphological changes that led to cell attachment and flattening out of cell aggregates. Although there were no significant differences in the expression levels of cell adhesion molecules in control and Dkk‐3‐silenced cells, this morphological response was not observed in Dkk‐3‐silenced cells. These findings suggest that Dkk‐3 plays a role in the regulation of cell interactions during RA‐induced neuronal differentiation. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 1243–1254, 2014  相似文献   

5.
6.
Retinoic acid induced differentiation of TERA-2-derived human embryonal carcinoma cells is accompanied by a dramatic reduction of extended globo-series glycolipids, including galactosyl globoside, sialylgalactosyl globoside, and globo-A antigen (each recognized by specific MoAbs). Associated with these glycolipid changes, the activities of two key enzymes, alpha 1----4 galactosyltransferase (for synthesis of globotriaosyl core structure) and beta 1----3 galactosyltransferase (for synthesis of galactosyl globoside), were found to be reduced 3- to 4-fold. The latter enzyme plays a key role in the synthesis of extended globo-series structures, and its characterization has not been reported previously. Therefore, its catalytic activity was studied in detail, including substrate specificity, detergent and phospholipid effects, pH and cation requirements, and apparent Km. During retinoic acid induced differentiation, a series of Lex glycolipid antigens (recognized by anti-SSEA-1 antibody) and their core structures (lacto-series type 2 chains) increase dramatically. In parallel with these changes in glycolipid expression, the activities of two key enzymes, beta 1----3 N-acetylglucosaminyltransferase (for extension of lacto-series type 2 chain) and alpha 1----3 fucosyltransferase (for synthesis of Lex structure), were found to increase by 4- and 2-fold, respectively. Similarly, an increase in the expression of several gangliosides (e.g., GD3 and GT3) during retinoic acid induced differentiation was mirrored by a 4-fold increase in the activity of alpha 2----3 sialyltransferase (for synthesis of ganglio core structure, GM3). The results suggest a coordinate regulation of key glycosyltransferases involved in core structure assembly and terminal chain modification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Differentiation of P19 embryonal carcinoma cells in response to the morphogen retinoic acid is regulated by Galpha(12/13) and is associated with activation of c-Jun N-terminal kinase. The role of MEKK1 and MEKK4 upstream of the c-Jun N-terminal kinase was investigated in P19 cells. P19 clones stably expressing constitutively active and dominant negative mutants of MEKK1 and MEKK4 were created and characterized. Expression of the constitutively active form of either MEKK1 or MEKK4 mimicked the action of retinoic acid, inducing these embryonal carcinoma cells to primitive endoderm. Expression of the dominant negative form of MEKK1 had no influence on the ability of retinoic acid to induce either JNK activation or primitive endoderm formation in P19 stem cells. Expression of the dominant negative form of MEKK4, in contrast, effectively blocks both morphogen-induced activation of JNK and cellular differentiation. These data identify MEKK4 as upstream of c-Jun N-terminal kinase in the pathway mediating differentiation of P19 stem cells to primitive endoderm.  相似文献   

8.
9.
10.
The rate at which P19 embryonal carcinoma cells in monolayer culture become anchorage dependent during differentiation induced by retinoic acid (RA) was investigated. In both nonsynchronized cultures and cultures synchronized by mitotic selection, the ability to grow in semisolid medium, characteristic of the malignant stem cell, decreased after a lag period of about 12 hr in the continuous presence of RA, prior to an increase in cell generation time. However, striking differences between synchronized and nonsynchronized cultures were observed in their commitment to differentiation following RA removal. After only 2 hr of exposure to RA, synchronized cells continued a program of differentiation in which they became anchorage dependent, while at least 24 hr of exposure was required for exponentially growing cells to become similarly committed. Induction of anchorage dependence by RA was also strikingly cell cycle dependent; 2 or 4 hr of exposure of synchronized cells to RA in G1 phase, when the intrinsic capacity for soft agar growth is low, was sufficient to commit cells to anchorage dependence, but a similar exposure in S phase was not. Together, these results suggested that interactions between cells in different cell cycle phases in asynchronous cultures influenced commitment since exposure to RA for more than one cycle (13 hr) was required for all cells to become anchorage dependent. Increased plasminogen activator secretion and epidermal growth factor binding, markers of certain differentiated cell types, increased only 3 and 5 days after RA addition, respectively, and were not induced by pulsed exposure to RA of less than 24 hr, even in synchronized cells.  相似文献   

11.
Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 M resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronalAbbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - FCS fetal calf serum - MAP microtubule-associated protein - MeHg methylmercury - RA retinoic acid  相似文献   

12.
In both embryonal carcinoma (EC) and embryonic stem (ES) cells, the differentiation pathway entered after treatment with retinoic acid (RA) varies as it is based upon different conditions of culture. This study employs mouse EC cells P19 to investigate the effects of serum on RA-induced neural differentiation occurring in a simplified monolayer culture. Cell morphology and expression of lineage-specific molecular markers document that, while non-neural cell types arise after treatment with RA under serum-containing conditions, in chemically defined serum-free media RA induces massive neural differentiation in concentrations of 10(-9) M and higher. Moreover, not only neural (Mash-1) and neuroectodermal (Pax-6), but also endodermal (GATA-4, alpha-fetoprotein) genes are expressed at early stages of differentiation driven by RA under serum-free conditions. Furthermore, as determined by the luciferase reporter assay, the presence or absence of the serum does not affect the activity of the retinoic acid response element (RARE). Thus, mouse EC cells are able to produce neural cells upon exposure to RA even without culture in three-dimensional embryoid bodies (EBs). However, in contrast to standard EBs-involving protocol(s), neural differentiation in monolayer only takes place when complex signaling from serum factors is avoided. This simple and efficient strategy is proposed to serve as a basis for neurodifferentiation studies in vitro.  相似文献   

13.
14.
Apoptosis is thought to be involved in the maintenance of cellular homeostasis, as well as various pathological processes. However, little information is available about the regulation of apoptosis during the aggregation stage of P19 embryonal carcinoma (EC) cells. Here we report that aggregation-induced apoptosis is markedly attenuated by treatment with retinoic acid (RA). PTEN (phosphatase and tensin homolog deleted on chromosome 10) expression was down-regulated during the aggregation phase of P19 EC cells in the presence, but not in the absence, of RA. Suppression of PTEN expression during the aggregation was accompanied by increased phosphorylation of serine/threonine kinase Akt and glycogen synthase kinase-3beta (GSK-3beta). Our results suggest that RA attenuates the induction of apoptosis during the aggregation phase of P19 EC cells, probably by suppressing PTEN expression.  相似文献   

15.
16.
Retinoic acid stimulates several murine embryonal carcinoma (EC) cell lines, even those previously considered to be incapable of differentiating, to give rise to cell types distinguishable from the parental phenotype in morphology, production of plasminogen activator and surface protein properties. Retinoic acid promotes these changes over a range of low concentrations (10−9–10−5 M) which are generally non-toxic to the cells. The effects are clearly demonstrated when EC cells are aggregated prior to exposure to retinoic acid. It is concluded that the observed phenotypic alterations induced by retinoic acid reflect differentiation of the EC cells since non-EC cell characteristics are maintained by cloned cells several generations after retinoic acid is removed from the cultures. Our studies suggest that although retinoic acid stimulates the conversion of EC cells to differentiated derivatives, it does not influence the direction of differentiation. Furthermore, the effectiveness of retinoic acid in stimulating differentiation of EC cells from lines such as Nulli-SCC1 raises the question of whether true ‘nullipotent’ EC lines really exist.  相似文献   

17.
Differentiation of P19 EC cells along different pathways into derivatives resembling cells of the three embryonic germ layers is accompanied by characteristic differences in modulation of expression of each of the three retinoic acid receptor genes, RAR alpha, -beta and -gamma. Differentiation induced by addition of RA to P19 EC cells cultured in monolayer is accompanied by a rapid increase in expression of both RAR alpha and -beta. Induction of RAR beta occurs in a characteristic biphasic manner, suggesting that multiple factors and/or different mechanisms are involved in controlling its expression. RAR beta mRNA is induced to a far higher level during early aggregation in the presence of RA than during early differentiation in monolayer, suggesting that the direction of differentiation depends on the number and/or ratio of alpha and beta type of RA receptors. Aggregation of P19 EC cells in the presence of RA, but not DMSO, is accompanied by repression of RAR gamma, suggesting that the expression of RAR beta and RAR gamma during neuroectodermal differentiation is mutually exclusive. The effects of RA on RAR expression are significantly greater in G1 than in S-phase of the cell cycle. These results extend previous observations that commitment to differentiation is cell cycle dependent and indicates that critical target gene regulation in response to RA has to take place in G1 for differentiation to occur.  相似文献   

18.
Phosphatidylinositol transfer protein (PI-TP) was studied in P19 embryonal carcinoma (EC) cells at different stages of retinoic acid (RA) induced differentiation. Western blot analysis indicated an increased expression of PI-TP (35 kDa) during differentiation. Western blots of isoelectric focusing gels showed that the 35 kDa band consisted of the PI-carrying form of PI-TP (pl 5.5) and of a novel, more acidic form of PI-TP (pl 5.4), levels of both of which increased during differentiation. These increased levels were not reflected in the in vitro PI-transfer activity of the cytosolic fraction nor in the mRNA levels as analyzed by northern blotting. By using indirect immunofluorescence it was shown that PI-TP is localized in the cytoplasm and associated with perinuclear Golgi structures and that this distribution is slightly affected during RA-induced differentiation. Immunoprecipitation of PI-TP from [32P]Pi labeled cells demonstrated that the level of phosphorylation of PI-TP is high in undifferentiated P19 EC cells and low after 5 days of RA-induced differentiation. These results strongly suggest that changes in the levels of PI-TP are intimately connected with changes in the growth characteristics of P19 EC cells during RA-induced differentiation. It remains to be established to what extent this connection is governed by the recent finding that PI-TP is an essential cytosolic factor in stimulating phospholipase C activity.  相似文献   

19.
Neutral amino acid transport was characterized in the pluripotent embryonal carcinoma (EC) cell line, OC15. Ten of the thirteen amino acids tested are transported by all three of the major neutral amino acid transport systems--A, L, and ASC--although one system may make a barely measurable contribution in some cases. The characterization of N-methyl-aminoisobutyric acid (meAIB) transport points to this model amino acid as a definitive substrate for System A transport by OC15 cells. Thus, high concentrations of meAIB can be used selectively to block System A transport, and the transport characteristics of meAIB represent system A transport. Kinetic analysis of System A, with a Km = 0.79mM and Vmax = 14.4 nmol/mg protein/5 min, suggests a single-component transport system, which is sensitive to pH changes. While proline transport in most mammalian cells is largely accomplished through System A, it is about equally divided between Systems A and ASC in OC15 cells, and System A does not contribute at all to proline transport by F9 cells, an EC cell line with limited developmental potential. Kinetic analysis of System L transport, represented by Na+-independent leucine transport, reveals a high-affinity, single-component system. This transport system is relatively insensitive to pH changes and has a Km = 0.0031 mM and Vmax = 0.213 nmol/mg protein/min. The putative System L substrate, 2-aminobicyclo-[2,2,1]heptane-2-carboxylic acid (BCH), inhibits Systems A and ASC as well as System L in OC15 cells. Therefore, BCH cannot be used as a definitive substrate for System L in OC15 cells. Phenylalanine is primarily transported by Na+-dependent Systems A and ASC (83% Na+-dependent; 73% System ASC) in OC15 cells, while it is transported primarily by the Na+-independent System L in most other cell types, including early cleavage stage mouse embryos and F9 cells. We have also found this unusually strong Na+-dependency of phenylalanine transport in mouse uterine blastocysts (82% Na+-dependent). There is no evidence for System N transport by OC15 cells, since histidine is transported primarily by a Na+-independent, BCH-inhibitable mechanism.  相似文献   

20.
In an initial effort to determine whether circulating retinol might promote differentiation of embryonal carcinoma (EC) cells in tumor form, we have assessed the ability of retinol to stimulate differentiation of cultured EC cells. We found that retinol induces several murine EC cell lines to differentiate in vitro. Differentiated derivatives were distinguishable from parental EC cells by morphology, cell surface antigenic properties and levels of secretion of plasminogen activator. Retinol effects could be seen at concentrations as low as 8.7 × 10−8 M (0.025 (μg/ml). Only two of eight EC lines tested failed to differentiate in response to retinol: PCC4-azaIR, which dies at retinol concentrations above 3.5 × 10−7 M; and PCC4(RA)-1, a mutant line derived from PCC4-azaIR cells, which also fails to differentiate in response to retinoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号