首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although α-tocopherol (α-TOC) is the most biologically active form of vitamin E and is found at high levels in plasma, γ-tocopherol (γ-TOC) has also been found to be a powerful antioxidant in vitro and constitutes up to 70% of the dietary intake of TOC. Low plasma levels of γ-TOC and a high α-TOC:γ-TOC ratio may be associated with coronary heart disease, suggesting that there may be a positive protective role for the γ-form of TOC. In this study the ability of different forms of vitamin E to protect against sister chromatid exchanges (SCE) induced by either hydrogen peroxide or menadione was investigated. Chinese hamster V79 cells were pre-treated with 10 μM TOC for 24 h, and then challenged with a genotoxin. After a 24 h pre-treatment, there was a greater incorporation of γ-TOC (319.8 ± 66.2 ng/106 cells) into V79 cells compared to α-TOC (66.9 ± 6.4 ng/106 cells). γ-TOC did not protect the cells against SCE induced by either hydrogen peroxide or menadione, α-TOC acetate was partially protective against both genotoxins, whereas α-TOC completely abolished the oxidant induced SCE. These results demonstrate that, despite a greater incorporation of γ-TOC into V79 cells, α-TOC but not γ-TOC was more effective at inhibiting oxidatively-induced SCE in V79 cells.  相似文献   

2.
Oxysterols, particularly those oxidised at position 7, are toxic to cells in culture and have been shown to induce apoptosis in cell types such as vascular endothelial cells, smooth muscle cells and monocytes. The precise mechanism by which oxysterols induce apoptosis is unknown but may involve the generation of oxidative stress. In the present study we examined the ability of alpha-TOC, alpha-TOC acetate (alpha-TOCA) and gamma-TOC to protect against 7 beta-hydroxycholesterol (7 beta-OHC)-induced apoptosis of human monocytic U937 cells. 7 beta-OHC is one of the most commonly detected oxysterols in foods and its level in plasma has been positively associated with an increased risk of atherosclerosis. The present study demonstrates a significant decrease in cell membrane integrity and cellular glutathione levels when U937 cells were treated with 30 microM 7 beta-OHC. DNA fragmentation also occurred, as measured by agarose gel electrophoresis, and the number of apoptotic cells increased as assessed by nuclear morphology. Analysis by HPLC showed that there was a greater incorporation of gamma-TOC into U937 cells after a 48 h incubation, than either alpha-TOC or alpha-TOCA. However, despite the increased uptake of gamma-TOC, only alpha-TOC, and not gamma-TOC or alpha-TOCA was effective at inhibiting 7 beta-OHC-induced apoptosis in U937 cells.  相似文献   

3.
We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway.  相似文献   

4.
The effect of vitamin E on chromosomal aberrations and mutation caused by Na2CrO4 was investigated in Chinese hamster V79 cells. Pretreatment with 25 microM alpha-tocopherol succinate (vitamin E) for 24 h prior to chromate exposure (2.5-5 microM) resulted in a decrease of metal-induced chromosomal aberrations. Na2CrO4 (2.5-7.5 microM) induced mutations at the HGPRT locus, but only within a very limited concentration range. This mutagenic response could also be suppressed by pretreatment with vitamin E. These results suggest that vitamin E can protect cells from the clastogenic and mutagenic action of chromate compounds, possibly through its ability to scavenge chromium(V) and/or free radicals.  相似文献   

5.
The effects of hydrogen peroxide on the beta-adrenergic and muscarinic responses of the rat trachea muscle were studied in vitro, after feeding rats, for 6 weeks, either a diet deficient in vitamin E and selenium or a control diet. In the control situation after incubation with 1 mM hydrogen peroxide for 30 min, a reduction of the maximal response to methacholine of 39% occurred whereas no pD2 shift could be demonstrated. Moreover, no response to isoprenaline after precontraction with 3 x 10(-7) M methacholine was left. In the deficient situation, we found a reduction to 64% of the response to methacholine after incubation with 1 mM hydrogen peroxide. Again isoprenaline became inactive, i.e. no relaxation with isoprenaline was observed after precontraction with 3 x 10(-7) M methacholine. We therefore conclude that vitamin E and selenium protect against oxidative stress in lung tissue and thus regulate the (patho-) physiological balance between adrenergic and muscarinic responses.  相似文献   

6.
A 24-h exposure to copper (400 microM, 600 microM) or cadmium (5 microM, 10 microM) significantly reduces the viability of COS-7 cells. A 2-h preincubation with vitamin E does not protect COS-7 cells from copper-induced toxicity, but does protect against cadmium-induced toxicity. Preincubation with aspirin protects cells from both copper- and cadmium-induced toxicity. A combination of aspirin and vitamin E (10 microM and 25 microM, respectively) increases cell viability in copper-exposed cells in a clearly additive manner, while in cadmium-exposed cells the effects are slightly additive. These results indicate that aspirin and vitamin E can protect cells from metal-induced toxicity. Differences in the protective effects of aspirin and vitamin E on copper versus cadmium-induced toxicity may be due to alternative mechanisms of metal toxicity or antioxidant activity.  相似文献   

7.
Kang KA  Lee KH  Chae S  Zhang R  Jung MS  Lee Y  Kim SY  Kim HS  Joo HG  Park JW  Ham YM  Lee NH  Hyun JW 《FEBS letters》2005,579(28):6295-6304
We have investigated the cytoprotective effect of eckol, which was isolated from Ecklonia cava, against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Eckol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, eckol reduced H(2)O(2) induced cell death in V79-4 cells. In addition, eckol inhibited cell damage induced by serum starvation and radiation by scavenging ROS. Eckol was found to increase the activity of catalase and its protein expression. Further, molecular mechanistic study revealed that eckol increased phosphorylation of extracellular signal-regulated kinase and activity of nuclear factor kappa B. Taken together, the results suggest that eckol protects V79-4 cells against oxidative damage by enhancing the cellular antioxidant activity and modulating cellular signal pathway.  相似文献   

8.
Treatment of Saccharomyces cerevisiae cells with low concentrations of either hydrogen peroxide or menadione (a superoxide-generating agent) induces adaptive responses which protect cells from the lethal effects of subsequent challenge with higher concentrations of these oxidants. Pretreatment with menadione is protective against cell killing by hydrogen peroxide; however, pretreatment with hydrogen peroxide is unable to protect cells from subsequent challenge with menadione. This suggests that the adaptive responses to these two different oxidants may be distinct.  相似文献   

9.
10.
Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines.  相似文献   

11.
Hou YZ  Zhao GR  Yang J  Yuan YJ  Zhu GG  Hiltunen R 《Life sciences》2004,75(14):1775-1786
Ligusticum chuanxiong and Angelica sinensis have been widely used in traditional Chinese medicine to treat some pathological settings such as atherosclerosis and hypertension. We determined the protective effect of the extract of Ligusticum chuanxiong and Angelica sinensis (ELCAS) on human umbilical vein endothelial cells (ECV304) damage induced by hydrogen peroxide. ECV304 cells were pre-treated with ELCAS and exposed to 5 mM hydrogen peroxide. The results show that ELCAS dose- and time-dependently protected ECV304 cells against hydrogen peroxide damage and suppressed the production of reactive oxygen species (ROS). The decrement of ROS may be associated with increased activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX). Western blot analysis revealed that ELCAS significantly increased the phosphorylation of ERK and promoted eNOS expression. These observations indicate that ELCAS protected ECV304 cells against hydrogen peroxide damage by enhancing the antioxidative ability, activating ERK and eNOS signaling pathway. Our data also provide new evidence of Ligusticum chuanxiong and Angelica sinensis in preventing both cardiovascular and cerebrovascular diseases.  相似文献   

12.
C C Huang 《Mutation research》1987,187(3):133-140
When the Chinese hamster cell line V79 and the tester strain of Salmonella typhimurium TA100 were treated with the precarcinogens dimethylnitrosamine (DMN) or diethylnitrosamine (DEN) in the presence of S9 mix, a dose-dependent increase of sister-chromatid exchanges (SCE) in V79 cells and His+ revertants in TA100 resulted. DMN was a far more efficient SCE inducer than DEN, while DEN was a more efficient inducer of His+ revertants than DMN. Retinol (Rol) effectively inhibited DMN and DEN induced SCE in V79 cells and His+ revertants in TA100. Concurrent treatment of V79 cells with Rol at various doses and one dose of DMN or DEN in the presence of S9 mix caused a significant reduction of SCE as compared to SCE induced by DMN or DEN without Rol. Rol inhibition of DMN-induced SCE was dose-dependent. Rol was less efficient in inhibiting DEN-induced SCE, and no consistent dose-dependent inhibition was observed. At all doses, Rol significantly inhibited DMN and DEN induced mutation frequencies in TA100. At the highest dose of Rol (40 micrograms/plate), the inhibition of DMN and DEN induced His+ revertants reached about 90% and 60%, respectively. The possibility that Rol exerts its antimutagenic activities by inhibiting certain forms of the cytochrome P-450 isoenzymes required for activation of precarcinogens such as DMN and DEN is discussed.  相似文献   

13.
Induction of sister-chromatid exchanges (SCE) and cell cycle delay in Chinese hamster cell line V79 after treatment with 8 organophosphorus pesticides (OPP) were studied. In addition, these effects were also studied using 1 of the 8 OPP in 2 human lymphoid cell lines. In V79 cells, 6 of the 8 OPP induced significant increase of frequencies of SCE and all the OPP induced various degrees of cell cycle delay. The 6 OPP in decreasing order of SCE induction are methyl-parathion, demeton, trichlorfon, dimethoate, malathion and methidathion. The 2 OPP that had no effect on SCE are diazion and disyston. The extents of induced cell cycle delay are generally related to the OPP concentrations but does not necessarily correlate with the extent of induction of SCE among the OPP studied. The results of studies on the effect of methyl-parathion on SCE and cell cycle delay in 2 human cell lines showed that both lines had significant and dose-dependent increase of SCE frequencies similar to those observed in V79 cells. In contrast to V79 cells, however, cell cycle delay was not as prominent in the human lines at comparable doses. These studies indicated that 5-bromodeoxyuridine labeling for analyzing SCE and cell cycle delay is a very sensitive method in assessing mutagenic potential of environmental compounds especially those that are highly toxic to and rapidly degradable in mammalian cells such as OPP.  相似文献   

14.
The glutathione-S-transferases (GST) are a major contributor to the eukaryotic cell's defences against chemical and oxidative stress. However, the role of individual GST isoenzymes in conferring resistance to xenobiotics has not been fully determined. We have examined the effect of the rat GSTA5 isoenzyme in the detoxication of alkylating agents and aldehydes by constructing a cell line in which it is stably expressed. The hamster fibroblast cell line V79 was transfected with a construct expressing GSTA5 from the CMV promoter. A stable clone (V79-GSTA5) was isolated after selecting for the neomycin phosphotransferase gene present on the introduced DNA. The cell line showed significantly increased levels of resistance towards the alkylating agents chorambucil and melphalan. Levels of resistance were 4-6-fold greater in V79-GSTA5 cells than in control cells. Increased levels of resistance were also observed towards the lipid peroxidation product acrolein (IC(50)=80 microM compared with 17 microM in control cells). The V79-GSTA5 cells also showed a 4-fold increase in resistance to trans, trans muconaldehyde (IC(50)=4 micro compared with l microM for control cells). GSTA5 did not protect against 4-hydroxynonenal, but it did provide greater levels of protection to hydrogen peroxide, with an IC(50) of 380 microM in V79-GSTA5 compared with 180 microM in control cells. In contrast, V79-GSTA5 cells were more sensitive to methyl glyoxal, suggesting that a methyl glyoxal-glutathione conjugate is more toxic that the parental compound. These data contribute towards the evaluation of the role of GSTA5 in the detoxication of these compounds.  相似文献   

15.
Nitric oxide (NO) can regulate osteoblast activities. This study was aimed to evaluate the protective effects of pretreatment with sodium nitroprusside (SNP) as a source of NO on hydrogen peroxide‐induced osteoblast insults and its possible mechanisms. Exposure of human osteosarcoma MG63 cells to hydrogen peroxide significantly increased cellular oxidative stress, but decreased ALP activity and cell viability, inducing cell apoptosis. Pretreatment with 0.3 mM SNP significantly lowered hydrogen peroxide‐induced cell insults. Treatment of human MG63 cells with hydrogen peroxide inhibited Bcl‐2 mRNA and protein production, but pretreatment with 0.3 mM SNP significantly ameliorated such inhibition. Sequentially, hydrogen peroxide decreased the mitochondrial membrane potential, but increased the levels of cytochrome c and caspase‐3 activity. Pretreatment with 0.3 mM SNP significantly lowered such alterations. Exposure to hydrogen peroxide decreased Runx2 mRNA and protein syntheses. However, pretreatment with 0.3 mM SNP significantly lowered the suppressive effects. Runx2 knockdown using RNA interference inhibited Bcl‐2 mRNA production in human MG63 cells. Protection of pretreatment with 0.3 mM SNP against hydrogen peroxide‐induced alterations in ALP activity, caspase‐3 activity, apoptotic cells, and cell viability were also alleviated after administration of Runx2 small interference RNA. Thus, this study shows that pretreatment with 0.3 mM SNP can protect human MG63 cells from hydrogen peroxide‐induced apoptotic insults possibly via Runx2‐involved regulation of bcl‐2 gene expression. J. Cell. Biochem. 108: 1084–1093, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Incubation of Chinese hamster V-79 cells with Na2CrO4 plus vitamin B2 resulted in an increase of Na2CrO4-induced DNA single strand breaks. Electron spin resonance (ESR) studies showed that vitamin B2 enhanced the formation of both hydroxyl radical and tetraperoxochromate (V) during the reaction of Na2CrO4 with hydrogen peroxide. Furthermore, ESR studies demonstrated that a chromium (V) species with a g value of 1.977 was formed by the reaction of Na2CrO4 with vitamin B2. These results indicate that chromate reacts with vitamin B2 to form chromium (V) species and also suggest that the enhancement effect of vitamin B2 on chromate-induced DNA single strand breaks may result from an increase of chromium (V)-related hydroxyl radical formation.  相似文献   

17.
Chemoprevention strategies for brain tumors (specifically gliomas) are few and surprisingly poorly investigated. We have studied the effects of tocopherols (TOCs; vitamin E) on proliferation and death processes of murine glioma C6 cells. These vitamers showed different cell uptake and concentration- and time-dependent inhibitory effects on cell growth that were significant at the lowest concentrations tested (1-10 microM). However, the inhibitory potency of TOCs seemed to reflect at least in part their actual cell concentrations at steady state, with the order of magnitude gamma-TOC >or= alpha-TOC > delta-TOC approximately or = beta-TOC. Moreover, for extracellular concentrations >or=10 microM, TOCs also showed a significant cytotoxic effects due mainly to necrosis, while apoptosis was negligible. Gamma-TOC (the form showing preferential cell uptake and lowest unspecific cytotoxicity) was the most effective inhibitor of cell cycle progression (arrest in G0/G1 phase) leading to lowered expression of cyclin E and cyclin-dependent kinases 2 and 4 and overexpression of p27 (specific inhibitor of S-phase entering). According to these signals, activated ERK1/2 and PKC upstream and Rb phosphorylation downstream were decreased. In conclusion, within TOCs the gamma form exerts the most potent and specific control of cell cycle progression in C6 cells (cytostatic effect). This suggests a chemopreventive role of this form of vitamin E in gliomas.  相似文献   

18.
Paracetamol was studied for possible genotoxic effects in V79 Chinese hamster cells. Paracetamol (0.5 mM for 30 min) reduced the rate of DNA synthesis in exponentially growing V79 cells to about 50% of control. A further decrease in the DNA synthesis was seen during the first 30 min after termination of paracetamol exposure. Paracetamol (3 and 10 mM for 2 h) caused a small increase in DNA single-strand breaks, as measured by the alkaline elution technique. After 16 h elution, the amount of DNA retained on the filters was 79 and 70% of controls in cells treated with 3 and 10 mM paracetamol respectively. No indication of DNA damage was seen in measuring the effect of paracetamol (0.25-10 mM for 2 h) on unscheduled DNA synthesis in growth-arrested cultures of V79 cells. At the highest concentrations (3 and 10 mM paracetamol), decreased unscheduled DNA synthesis was observed. Also UV-induced DNA-repair synthesis was inhibited by 3 and 10 mM paracetamol. DNA-repair synthesis was, however, inhibited at a much higher concentration than that inhibiting replicative DNA synthesis. The number of sister-chromatid exchanges (SCE) increased in a dose-dependent manner on 2 h exposure to paracetamol from 1 mM to 10 mM. At the highest dose tested (10 mM), the number of SCE increased to 3 times the control value. Co-culturing the V79 cells with freshly isolated mouse hepatocytes had no further effect on the paracetamol induced sister-chromatid exchanges. The present study indicates that paracetamol may cause DNA damage in V79 cells without any external metabolic activation system added.  相似文献   

19.
Ju EM  Lee SE  Hwang HJ  Kim JH 《Life sciences》2004,74(8):1013-1026
The antioxidant and anticancer properties of a medicinal plant, Betula platyphylla var. japonica were investigated. The total methanol extract of B. platyphylla var. japonica had protective effects against hydrogen peroxide (H2O2) in the Chinese hamster lung fibroblast (V79-4) cell line and induced apoptotic cell death in human promyelocytic leukemia (HL-60) cells, a cancer cell line. B. platyphylla var. japonica extract significantly increased cell viability against H2O2. The extract also showed high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity (IC50 2.4 microg/ml) and lipid peroxidation inhibitory activity (IC50 below 4.0 microg/ml). Furthermore, B. platyphylla var. japonica extract reduced the number of V79-4 cells arrested in G2/M in response to H2O2 treatment and increased the activities of several cellular antioxidant enzymes, including superoxide dismutase, catalase and glutathione peroxidase. Treatment with B. platyphylla var. japonica extract induced cytotoxicity and apoptosis in HL-60 cells, as shown by nucleosomal DNA fragmentation, increases in the subdiploid cell population, and fluorescence microscopy. B. platyphylla var. japonica extract gradually increased the expression of pro-apoptotic Bax and led to the activation of caspase-3 and cleavage of PARP. These findings suggest that B. platyphylla var. japonica exhibits potential antioxidant and anticancer properties.  相似文献   

20.
In order to examine the possible role of vitamin E on the modulation of macrophages, we investigated the effect of vitamin E on O2- and PGE2 production in macrophages. The production of both PGE2 and O2- in rat peritoneal macrophages was dose-dependently stimulated by the addition of PMA and calcium ionophore A23187. However, the macrophages obtained after intraperitoneal injection of vitamin E for six successive days showed less PGE2 and O2- production when stimulated with PMA or A23187 as compared to those of control macrophages. O2- production in control macrophages stimulated with 139 nM PMA and 1 microM A23187 as 4.2 +/- 0.3 and 3.0 +/- 0.2 nmol/min per 10(6) cells, respectively. On the other hand, O2- production by the macrophages from vitamin E-treated rats was 1.5 +/- 0.4 nmol/min per 10(6) cells when stimulated with the PMA, and was not detectable when stimulated with A23187. As for the production of PGE2, control macrophages produced 2.59 +/- 0.70 ng/30 min per 10(6) cells when stimulated with PMA and 8.96 +/- 3.26 ng/30 min per 10(6) cells with the A23187, whereas PGE2 production by the macrophages from vitamin E-treated rats was reduced to 12-20% of the control. By analyzing alpha-tocopherol content and intracellular concentration of calcium ion [( Ca2+]i) in the macrophages isolated from control and vitamin E-treated rats, vitamin E treatment augmented alpha-tocopherol content (384.7 +/- 76.1 vs. 1.2 +/- 0.4 ng/10(6) cells) and decreased free [Ca2+]i when stimulated with A23187 (652 +/- 14 vs. 1201 +/- 223 nM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号