首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Fungal biology》2020,124(2):83-90
Latterly, the upsurge in use of antifungal drugs has brought about the emergence of several drug-resistance strains, making it skeptical to continue relying on current therapeutic regime. In the necessity of resistance-free antifungal agent, flavonoids presented possibilities of replacing existing drugs, displaying antifungal activity against pathogenic fungi. Among them, quercetin, one of the most representative flavonoids, exhibited antifungal activity against Candida albicans. To inspect the further understanding regarding quercetin, the antifungal mode of action of quercetin was investigated. In the initial step, the apoptosis was monitored after quercetin treatment. Moreover, intracellular levels of Mg2+ was assessed and was determined that Mg2+ increase occurred under the influence of quercetin. In addition, several features of mitochondrial dysfunction were monitored. Mitochondrial dysfunction triggers decrease in mitochondrial redox levels and leads to disruption in mitochondrial antioxidant system. Increased intracellular ROS and decreased intracellular redox levels were also displayed, indicating the occurrence of overall disruption in antioxidant systems. Sequentially, DNA fragmentation was observed and this DNA damage in turn induces apoptosis. In analyses, hexaamminecobalt(III) chloride (Cohex) was applied to inhibit Mg2+ transport between cytosol and mitochondria. Cohex attenuated the effects induced by quercetin, which demonstrates that the presence of Mg2+ is essential in quercetin-induced apoptosis.  相似文献   

3.
Quercetin, a flavonoid found in various foodstuffs, has antioxidant properties and increases glutathione (GSH) levels and antioxidant enzyme function. Considerable attention has been focused on increasing the intracellular GSH levels in many diseases, including Alzheimer's disease (AD). Amyloid beta-peptide [Abeta(1-42)], elevated in AD brain, is associated with oxidative stress and neurotoxicity. We aimed to investigate the protective effects of quercetin on Abeta(1-42)-induced oxidative cell toxicity in cultured neurons in the present study. Decreased cell survival in neuronal cultures treated with Abeta(1-42) correlated with increased free radical production measured by dichlorofluorescein fluorescence and an increase in protein oxidation (protein carbonyl, 3-nitrotyrosine) and lipid peroxidation (protein-bound 4-hydroxy-2-nonenal). Pretreatment of primary hippocampal cultures with quercetin significantly attenuated Abeta(1-42)-induced cytotoxicity, protein oxidation, lipid peroxidation and apoptosis. A dose-response study suggested that quercetin showed protective effects against Abeta(1-42) toxicity by modulating oxidative stress at lower doses, but higher doses were not only non-neuroprotective but also toxic. These findings provide motivation to test the hypothesis that quercetin may provide a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.  相似文献   

4.
Quercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell’s own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.  相似文献   

5.
Oxidative stress can induce neurotoxic insults by increasing intracellular calcium (Ca2+), which has been implicated in various neurodegenerative diseases in aging. Previously, we showed that hydrogen peroxide induced calcium dysregulation in PC12 cells, as evidenced by (i) an increase in calcium baselines, (ii) a decrease in depolarization-induced calcium influx, and (iii) a failure to recover the Ca2+ levels. In the present experiments, we investigated whether a dietary flavonoid, quercetin, can antagonize the effects of hydrogen peroxide in the same cell model. We also investigated the possible structure-activity relationships of quercetin by comparing the results with four other flavonoids, each having a slightly different structure from quercetin. Our results indicated that two structural components, including (i) 3', 4'-hydroxyl (OH) groups in the B ring and (ii) a 2,3-double bond in conjugation with a 4-oxo group in the C ring, along with the polyphenolic structures were crucial for the protection. These structural components are found in quercetin, and this compound was also the most efficacious in reducing both the H2O2-induced Ca2+ dysregulation in cells and oxidative stress assessed via the dichlorofluorescein assay. Collectively, these data indicated that the particular polyphenolic structural components of quercetin provided its strong antioxidant property of protecting cells against H2O2-induced oxidative stress and calcium dysregulation.  相似文献   

6.
Primordial germ cells (PGCs) are undifferentiated pluripotent stem cells, whose proliferation is influenced by many internal and external factors. In the present study, a PGC-somatic cell co-culture model was established to evaluate effects of the flavonoids daidzein (DAI) and quercetin (QUE) on proliferation of PGCs from embryonic chickens. PGCs were isolated from the germinal ridge of 3.5-4day embryos and cultured in 5% fetal calf serum (FCS)-supplemented Medium 199. PGC subculture was carried out on chicken embryonic fibroblast feeder (CEF) or follicular granulosa cell feeder (GCF) layers. The subcultured PGCs were challenged with flavonoids alone or in combination with a reactive oxygen substance (ROS)-producing system on CEF for 48h. The results showed a better supporting effect of CEF than GCF. Flavonoids (1microg/ml) significantly promoted PGC proliferation, which could be markedly inhibited by ROS. The oxidative damage by ROS was further manifest by decreased superoxide dismutase activity and glutathione levels. In addition, activation of protein kinase A (PKA) by forskolin significantly stimulated PGC proliferation, but PKA inhibitor H89 inhibited the proliferating effects induced by DAI and QUE. These results indicated that cultured PGCs respond to exogenous agents on proliferation and that antioxidant flavonoids could restore the intracellular antioxidant system and promote PGC proliferation via their antioxidant action involving the PKA signaling pathway.  相似文献   

7.
8.
The catalytic subunit of γ‐glutamylcysteine ligase (GCLC) catalyses the rate‐limiting step in the de novo synthesis of glutathione (GSH), which is involved in maintaining intracellular redox balance. GSH is especially important for antioxidant defense system since beta‐cells show intrinsically low expression of antioxidant enzymes. In the present study, we investigated the regulatory mechanisms by which quercetin, a flavonoid, induces the expression of the GCLC gene in rat pancreatic beta‐cell line INS‐1. Promoter study found that the proximal GC‐rich region (from ?90 to ?34) of the GCLC promoter contained the quercetin‐responsive cis‐element(s). The quercetin‐responsive region contains consensus DNA binding site for early growth response 1 (EGR1) at ‐67 (5′‐CGCCTCCGC‐3′) which overlaps with a putative Sp1 binding site. Electrophoretic mobility shift assay showed that an oligonucleotide containing the EGR1 site was bound to nuclear factors EGR1, Sp1, and Sp3. In the promoter analysis, mutation of EGR1 site significantly reduced the quercetin response, whereas mutation of Sp1 site decreased only the basal activity of the GCLC promoter. Additionally, the transient overexpression of EGR1 significantly increased basal activity of the GCLC promoter. Finally, we showed that quercetin potently induced both EGR1 mRNA and its protein levels without affecting the expression of Sp1 and Sp3 proteins. Therefore, we concluded that EGR1 was bound to GC‐rich region of the GCLC gene promoter, which was prerequisite for the transactivation of the GCLC gene by quercetin. J. Cell. Biochem. 108: 1346–1355, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Quercetin is known to protect the cells suffering from oxidative stress. The oxidative stress elevates intracellular Ca(2+) concentration, one of the phenomena responsible for cell death. Therefore, we hypothesized that quercetin would protect the cells suffering from overload of intracellular Ca(2+). To test the hypothesis, the effects of quercetin on the cells suffering from oxidative stress and intracellular Ca(2+) overload were examined by using a flow cytometer with appropriate fluorescence probes (propidium iodide, fluo-3-AM, and annexin V-FITC) and rat thymocytes. The concentrations (1-30 microM) of quercetin to protect the cells suffering from intracellular Ca(2+) overload by A23187, a calcium ionophore, were similar to those for the cells suffering from oxidative stress by H(2)O(2). The cell death respectively induced by H(2)O(2) and A23187 was significantly suppressed by removal of external Ca(2+). Furthermore, quercetin greatly delayed the process of Ca(2+)-dependent cell death although it did not significantly affect the elevation of intracellular Ca(2+) concentration by H(2)O(2) and A23187, respectively. It is concluded that quercetin can protect the cells from oxidative injury in spite of increased concentration of intracellular Ca(2+). Results suggest that quercetin is also used for protection of cells suffering from overload of intracellular Ca(2+).  相似文献   

10.
Natural polyphenol compounds are often good antioxidants, but they also cause damage to cells through more or less specific interactions with proteins. To distinguish antioxidant activity from cytotoxic effects we have tested four structurally related hydroxyflavones (baicalein, mosloflavone, negletein, and 5,6-dihydroxyflavone) at very low and physiologically relevant levels, using two different cell lines, L-6 myoblasts and THP-1 monocytes. Measurements using intracellular fluorescent probes and electron paramagnetic resonance spectroscopy in combination with cytotoxicity assays showed strong antioxidant activities for baicalein and 5,6-dihydroxyflavone at picomolar concentrations, while 10 nM partially protected monocytes against the strong oxidative stress induced by 200 µM cumene hydroperoxide. Wide range dose-dependence curves were introduced to characterize and distinguish the mechanism and targets of different flavone antioxidants, and identify cytotoxic effects which only became detectable at micromolar concentrations. Analysis of these dose-dependence curves made it possible to exclude a protein-mediated antioxidant response, as well as a mechanism based on the simple stoichiometric scavenging of radicals. The results demonstrate that these flavones do not act on the same radicals as the flavonol quercetin. Considering the normal concentrations of all the endogenous antioxidants in cells, the addition of picomolar or nanomolar levels of these flavones should not be expected to produce any detectable increase in the total cellular antioxidant capacity. The significant intracellular antioxidant activity observed with 1 pM baicalein means that it must be scavenging radicals that for some reason are not eliminated by the endogenous antioxidants. The strong antioxidant effects found suggest these flavones, as well as quercetin and similar polyphenolic antioxidants, at physiologically relevant concentrations act as redox mediators to enable endogenous antioxidants to reach and scavenge different pools of otherwise inaccessible radicals.  相似文献   

11.
Antioxidative and prooxidative effects of quercetin on A549 cells   总被引:5,自引:0,他引:5  
Quercetin, a common plant polyphenol, has been reported to show both antioxidant and prooxidant properties. We studied the effects of quercetin on A549 cells in in vitro culture. We found that low concentrations of the flavonoid stimulated cell proliferation and increased total antioxidant capacity (TAC) of the cells; while higher concentrations of the flavonoid decreased cell survival and viability, thiol content, TAC and activities of superoxide dismutase, catalase and glutathione S-transferase. Quercetin decreased production of reactive oxygen species in the cells but produced peroxides in the medium. The cellular effects of quercetin are therefore complex and include both antioxidant effects and induction of oxidative stress due to formation of reactive oxygen species in the extracellular medium.  相似文献   

12.
13.
Fruits and vegetables protect against cancer by so far not well-characterized mechanisms. One likely explanation for this effect is that dietary plants contain substances able to control basic cellular processes such as the endogenous defense against oxidative stress. Oxidative stress is pivotal in many pathological processes and reduced oxidative stress is implicated in prevention of disease. Our results demonstrate that extract from onion and various flavonoids induce the cellular antioxidant system. Onion extract and quercetin were able to increase the intracellular concentration of glutathione by approximately 50%. Using a reporter construct where reporter expression is driven by the gamma-glutamylcysteine synthetase (GCS) heavy subunit (GCS(h)) promoter we show that onion extract, quercetin, kaempferol, and apigenin increased reporter gene activity, while a fourth flavonoid, myricetin and sugar conjugates of quercetin were unable to increase reporter expression. Quercetin was also able to induce a distal part of the GCS(h) promoter containing only two antioxidant-response/electrophile-response elements (ARE/EpRE). Our data strongly suggest that flavonoids are important in the regulation of the intracellular glutathione levels. This effect may be exerted in part through GCS gene regulation, and may also contribute to the disease-preventing effect of fruits and vegetables.  相似文献   

14.
Quercetin, a flavonoid with anti-oxidant, metal chelating, kinase modulating and anti-proliferative properties, can induce hypoxia-inducible factor-1α (HIF-1α) in normoxia, but its mechanism of action has not been determined. In this study we characterized the induction of HIF-1α and the inhibition of cell proliferation caused by quercetin in HeLa and ASM (airway smooth muscle) cells and examined the effect of iron on these processes. Furthermore, we investigated the relevance of the intracellular levels of quercetin to HIF-1α expression and cell proliferation. Our data demonstrate that quercetin depletes intracellular calcein–chelatable iron and that supplying additional iron from extracellular or intracellular pools abrogates the induction of HIF-1α by quercetin. Moreover, addition of iron reverses the quercetin-induced inhibition of DNA synthesis, cell proliferation and cycle progression, but to different extents, depending on cell type. We propose that quercetin stabilises HIF-1α and inhibits cell proliferation predominantly by decreasing the concentration of intracellular iron through chelation.  相似文献   

15.
In the present work, the potential hepatoprotective effects of five phenolic compounds against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects. t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH leakage, increased lipid peroxidation, DNA damage as well as decreased levels of reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell death induced by t-BHP (when in co-incubation). If the effects of quercetin are given the reference value 1, the compounds rank in the following order according to inhibition of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-glucoside (0.30) > caffeic acid (0.21). The results underscore the importance of the compound's lipophilicity in addition to its antioxidant potential for its biological activity. All tested phenolic compounds were found to significantly decrease lipid peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the natural antioxidants tested appeared to be of even greater importance for DNA protection than for cell survival. The protective potential against cell death was probably achieved mainly by preventing intracellular GSH depletion. The phenolic compounds studied here showed protective potential against oxidative damage induced in HepG2 cells. This could be beneficial against liver diseases where it is known that oxidative stress plays a crucial role.  相似文献   

16.
Ascorbic acid (AA) is an important cytoplasmic antioxidant that mice synthesize in the liver, the intracellular levels of which decrease in an oxidative stress situation such as endotoxic shock. The present work deals with the changes in AA levels, that modulate the immune function, in the two main immune cells, namely macrophages and lymphocytes, from female BALB/c mice suffering endotoxic shock caused by intraperitoneal injection of Escherichia coli lipopolysaccharide (LPS) (100 mg/kg). The intake by cells of this antioxidant present in vitro at different concentrations was also studied. The animals show an oxidative stress, standardized in previous studies, that causes mortality at 30 h after LPS injection. The cells were obtained from the peritoneum at 2, 4, 12 and 24 h after LPS or PBS (control) injections and were incubated without or with AA at 0.01, 0.1 and 1 mM for 10, 30, 60, 120 or 180 min. The hepatic AA levels were also studied at 0, 2, 4, 12 and 24 h after LPS injection. The peritoneal cells obtained from animals injected with LPS showed increased AA levels in relation to the control cells at all times after LPS injection, with maximal effect at 12h. The AA levels decreased after this time, in agreement with changes in the AA hepatic levels. The increase was due to the AA of lymphocytes since macrophages showed a decrease in AA at different times after LPS injection. Both cells showed an increase in the intracellular levels of AA when this antioxidant was added in vitro. This takes place mainly at 30-60 min of incubation in cells from controls and at 10 min in cells from treated mice 12-24 h after LPS injection. The incorporation decreased at these times of endotoxic shock, a few hours before death. In all cases AA levels were higher in lymphocytes than in macrophages, and 1 mM was the most effective concentration. These results suggest that the immune cells need appropriate levels of antioxidants, such as AA, under oxidative stress conditions, and that while lymphocytes take and accumulate AA, macrophages use it.  相似文献   

17.
This study investigated the individual and combined effects of beta-carotene with a common flavonoid (naringin, quercetin or rutin) on DNA damage induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a potent tobacco-related carcinogen in human. A human lung cancer cell line, A549, was pre-incubated with beta-carotene, a flavonoid, or both for 1h followed by incubation with NNK for 4 h. Then, we determined DNA strand breaks and the level of 7-methylguanine (7-mGua), a product of NNK metabolism by cytochrome P450 (CYP). We showed that beta-carotene at 20 microM significantly enhanced NNK-induced DNA strand breaks and 7-mGua levels by 90% (p < 0.05) and 70% (p < 0.05), respectively, and that the effect of beta-carotene was associated with an increased metabolism of NNK by CYP because the concomitant addition of 1-aminobenzotriazole, a CYP inhibitor, with beta-carotene to cells strongly inhibited NNK-induced DNA strand breaks. In contrast to beta-carotene, incubation of cells with naringin, quercetin or rutin added at 23 microM led to significant inhibition of NNK-induced DNA strand breaks, and the effect was in the order of quercetin > naringin > rutin. However, these flavonoids did not significantly affect the level of 7-mGua induced by NNK. Co-incubation of beta-carotene with any of these flavonoids significantly inhibited the enhancing effect of beta-carotene on NNK-induced DNA strand breaks; the effects of flavonoids were dose-dependent and were also in the order of quercetin > naringin > rutin. Co-incubation of beta-carotene with any of these flavonoids also significantly inhibited the loss of beta-carotene incorporated into the cells, and the effects of the flavonoids were also in the order of quercetin > naringin > rutin. The protective effects of these flavonoids may be attributed to their antioxidant activities because they significantly decreased intracellular ROS, and the effects were also in the order of quercetin > naringin > rutin. These in vitro results suggest that a combination of beta-carotene with naringin, rutin, or quercetin may increase the safety of beta-carotene.  相似文献   

18.
Quercetin, a flavonoid with anti-oxidant, metal chelating, kinase modulating and anti-proliferative properties, can induce hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia, but its mechanism of action has not been determined. In this study we characterized the induction of HIF-1alpha and the inhibition of cell proliferation caused by quercetin in HeLa and ASM (airway smooth muscle) cells and examined the effect of iron on these processes. Furthermore, we investigated the relevance of the intracellular levels of quercetin to HIF-1alpha expression and cell proliferation. Our data demonstrate that quercetin depletes intracellular calcein-chelatable iron and that supplying additional iron from extracellular or intracellular pools abrogates the induction of HIF-1alpha by quercetin. Moreover, addition of iron reverses the quercetin-induced inhibition of DNA synthesis, cell proliferation and cycle progression, but to different extents, depending on cell type. We propose that quercetin stabilises HIF-1alpha and inhibits cell proliferation predominantly by decreasing the concentration of intracellular iron through chelation.  相似文献   

19.
Although the cause of dopaminergic cell death in Parkinson's disease (PD) remains unknown, oxidative stress has been strongly implicated. Because of their ability to combat oxidative stress, diet derived phenolic compounds continue to be considered as potential agents for long-term use in PD. This study was aimed at investigating whether the natural phenolic compounds curcumin, naringenin, quercetin, fisetin can be neuroprotective in the 6-OHDA model of PD. Unilateral infusion of 6-OHDA into the medial forebrain bundle produced a significant loss of tyrosine hydroxylase (TH)-positive cells in the substantia nigra (SN) as well as a decreased of dopamine (DA) content in the striata in the vehicle-treated animals. Rats pretreated with curcumin or naringenin showed a clear protection of the number of TH-positive cells in the SN and DA levels in the striata. However, neither pretreatment with quercetin nor fisetin had any effects on TH-positive cells or DA levels. The ability of curcumin and naringenin to exhibit neuroprotection in the 6-OHDA model of PD may be related to their antioxidant capabilities and their capability to penetrate into the brain.  相似文献   

20.
Elevated levels of extracellular glutamate have been linked to reactive oxygen species mediated neuronal damage and brain disorders. Lipoic acid is a potent antioxidant that has previously been shown to exhibit neuroprotection in clinical studies. A new positively charged water soluble lipoic acid amide analog, 2-(N,N-dimethylamine) ethylamido lipoate HCl (LA-plus), with a better cellular reduction and retention of the reduced form was developed. This novel antioxidant was tested for protection against glutamate induced cytotoxicity in a HT4 neuronal cell line. Glutamate treatment for 12 h resulted in significant release of LDH from cells to the medium suggesting cytotoxicity. Measurement of intracellular peroxides showed marked (up to 200%) increase after 6 h of glutamate treatment. Compared to lipoic acid, LA-plus was more effective in (1) protecting cells against glutamate induced cytotoxicity, (2) preventing glutamate induced loss of intracellular GSH, and (3) disallowing increase of intracellular peroxide level following the glutamate challenge. The protective effect of LA-plus was found to be independent of its stereochemistry. The protective function of this antioxidant was synergistically enhanced by selenium. These results demonstrate that LA-plus is a potent protector of neuronal cells against glutamate-induced cytotoxicity and associated oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号