首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire is a common disturbance in the North American boreal forest that influences ecosystem structure and function. The temporal and spatial dynamics of fire are likely to be altered as climate continues to change. In this study, we ask the question: how will area burned in boreal North America by wildfire respond to future changes in climate? To evaluate this question, we developed temporally and spatially explicit relationships between air temperature and fuel moisture codes derived from the Canadian Fire Weather Index System to estimate annual area burned at 2.5° (latitude × longitude) resolution using a Multivariate Adaptive Regression Spline (MARS) approach across Alaska and Canada. Burned area was substantially more predictable in the western portion of boreal North America than in eastern Canada. Burned area was also not very predictable in areas of substantial topographic relief and in areas along the transition between boreal forest and tundra. At the scale of Alaska and western Canada, the empirical fire models explain on the order of 82% of the variation in annual area burned for the period 1960–2002. July temperature was the most frequently occurring predictor across all models, but the fuel moisture codes for the months June through August (as a group) entered the models as the most important predictors of annual area burned. To predict changes in the temporal and spatial dynamics of fire under future climate, the empirical fire models used output from the Canadian Climate Center CGCM2 global climate model to predict annual area burned through the year 2100 across Alaska and western Canada. Relative to 1991–2000, the results suggest that average area burned per decade will double by 2041–2050 and will increase on the order of 3.5–5.5 times by the last decade of the 21st century. To improve the ability to better predict wildfire across Alaska and Canada, future research should focus on incorporating additional effects of long‐term and successional vegetation changes on area burned to account more fully for interactions among fire, climate, and vegetation dynamics.  相似文献   

2.
Recent fire years 2002 and 2005 have been, in the context of the past 40 years, exceptional in Quebec, with area burned totalling over 1.8 million hectares. Without prolonged fire statistics and meteorological records, it remains difficult to place these events in the contexts of climate change and variability. How frequently does this type of year occur? In this study, chronologies of radial increment measurements of Pinus spp., considered reliable back to at least 1821, were calibrated to develop an index of past moisture in ground surface fuels in the Baie-Comeau area of the Central Laurentians ecoregion, Quebec (namely the Canadian Drought Code (CDC)). Over 37% of the variance in CDC observations (period 1901–2000) was recovered by the tree-ring estimates. These estimates in turn correlated well (R2=0.39) with annual area burned (AAB) by large forest fires (size >200 ha; 1959–1999) in the Central Laurentians ecoregion. The smoothed reconstruction showed the prevalence of periods of drier conditions than average from the 1840s to the 1920s, followed by an episode of moister conditions from the 1930s to the 1960s. The minimum occurrence rate of years of extreme wildfire risk in the Baie-Comeau area was estimated in the 1940s at 0.04 yr?1, while the maximum was estimated in the 1910s at 0.21 yr?1. Occurrence rate at the turn of the 21st century (0.21 yr?1) was closely similar to that recorded during the 1890–1910s (within the uncertainty bands). These long-term variations matched temporal variations in a previously published time-since-fire distribution. The combined information from these ecological sources of data provides meaningful insights for future management of wildfire risk in the Baie-Comeau area, notably to increasing adaptation capacity in response to climate change.  相似文献   

3.
Climate oscillations such as El Niño–Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) are known to affect temperature and precipitation regimes and fire in different regions of the world. Understanding the relationships between climate oscillations, drought, and area burned in the past is required for anticipating potential impacts of regional climate change and for effective wildfire‐hazard management. These relationships have been investigated for British Columbia (BC), Canada, either as part of national studies with coarse spatial resolution or for single ecosystems. Because of BC's complex terrain and strong climatic gradients, an investigation with higher spatial resolution may allow for a spatially complete but differentiated picture. In this study, we analyzed the annual proportion burned–climate oscillation–drought relationships for the province's 16 Biogeoclimatic Ecosystem Classification (BEC) zones. Analyses are based on a digital, spatially explicit fire database, climate oscillation indices, and monthly precipitation and temperature data with a spatial resolution of 400 m for the period 1920–2000. Results show that (1) fire variability is better related to summer drought than to climate oscillations, and that (2) fire variability is most strongly related to both, climate oscillations and summer drought in southeastern BC. The relationship of area burned and summer drought is strong for lower elevations in western BC as well. The influence of climate oscillations on drought is strongest and most extensive in winter and spring, with higher indices being related to drier conditions. Winter and spring PDO and additive winter and spring PDO+ENSO indices show BC's most extensive significant relationship to fire variability. Western BC is too wet to show a moisture deficit in summer that would increase annual area burned due to teleconnections.  相似文献   

4.
Questions: What climate variables best explain fire occurrence and area burned in the Great Lakes‐St Lawrence forest of Canada? How will climate change influence these climate variables and thereby affect the occurrence of fire and area burned in a deciduous forest landscape in Témiscamingue, Québec, Canada? Location: West central Québec and the Great Lakes‐St Lawrence forest of Canada. Methods: We first used an information‐theoretic framework to evaluate the relative role of different weather variables in explaining occurrence and area burned of large fires (>200 ha, 1959‐1999) across the Great Lakes‐St Lawrence forest region. Second, we examined how these weather variables varied historically in Témiscamingue and, third, how they may change between the present and 2100 according to different scenarios of climate change based on two Global Circulation Models. Results: Mean monthly temperature maxima during the fire season (Apr‐Oct) and weighted sequences of dry spells best explained fire occurrence and area burned. Between 1910 and 2004, mean monthly temperature maxima in Témiscamingue showed no apparent temporal trend, while dry spell sequences decreased in frequency and length. All future scenarios show an increase in mean monthly temperature maxima, and one model scenario forecasts an increase in dry spell sequences, resulting in a slight increase in forecasted annual area burned. Conclusion: Despite the forecasted increase in fire activity, effects of climate change on fire will not likely affect forest structure and composition as much as natural succession or harvesting and other disturbances, principally because of the large relative difference in area affected by these processes.  相似文献   

5.
We report new data on tree-ring growth in northern European Russia, a region with a hitherto relatively sparse tree-ring network. We explore its associations with climate variability. Areas, sampling locations and trees were selected for representativeness rather than climate sensitivity. Using tree rings from 651 conifers from six widely dispersed areas we show strong intercorrelation between trees within each major conifer species within and between areas. Regional composite tree-ring series for spruce and pine contain a major fraction of decadal and multidecadal variability. The most likely driver of this common variability is interannual to multidecadal climate variability. Gridded monthly instrumental climate data for the period 1902–2008, particularly mean temperature and total precipitation, were tested as predictors of each local species-specific tree-ring site chronology. The most consistent pattern emerged for spruce at all but the southernmost area. Cool and moist summers the year before growth were consistent drivers of spruce ring growth throughout the period, with no change in recent decades. Self-calibrating Palmer Drought Severity Index for prior summer was also a strong and consistent driver of spruce ring growth. For pine, there was a weaker but similarly stable association between larger rings and warm, moist conditions, in this case in the current summer. These associations were also identified at multidecadal time scales, particularly for spruce. On the other hand, the specific role of moisture variability in determining interannual to multidecadal variability in tree growth in this high latitude region raises questions about the relative vulnerability of spruce and pine there under global warming.  相似文献   

6.
Aim To assess the importance of drought and teleconnections from the tropical and north Pacific Ocean on historical fire regimes and vegetation dynamics in north‐eastern California. Location The 700 km2 study area was on the leeward slope of the southern Cascade Mountains in north‐eastern California. Open forests of ponderosa pine (Pinus ponderosa var. ponderosa Laws.) and Jeffrey pine (P. jeffreyi Grev. & Balf) surround a network of grass and shrub‐dominated meadows that range in elevation from 1650 to 1750 m. Methods Fire regime characteristics (return interval, season and extent) were determined from crossdated fire scars and were compared with tree‐ring based reconstructions of precipitation and temperature and teleconnections for the period 1700–1849. The effect of drought on fire regimes was determined using a tree‐ring based proxy of climate from five published chronologies. The number of forest‐meadow units that burned was compared with published reconstructions of the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Results Landscape scale fires burned every 7–49 years in meadow‐edge forests and were influenced by variation in drought, the PDO and ENSO. These widespread fires burned during years that were dryer and warmer than normal that followed wetter and cooler years. Less widespread fires were not associated with this wet, then dry climate pattern. Widespread fires occurred during El Niño years, but fire extent was mediated by the phase of the PDO. Fires were most widespread when the PDO was in a warm or normal phase. Fire return intervals, season and extent varied at decadal to multi‐decadal time scales. In particular, an anomalously cool, wet period during the early 1800s resulted in widespread fires that occurred earlier in the year than fires before or after. Main conclusions Fire regimes in north‐eastern California were strongly influenced by regional and hemispheric‐scale climate variation. Fire regimes responded to variation that occurred in both the north and tropical Pacific. Near normal modes of the PDO may influence fire regimes more than extreme conditions. The prevalence of widespread teleconnection‐driven fires in the historic record suggests that variation in the Pacific Ocean was a key regulator of fire regimes through its influence on local fuel production and successional dynamics in north‐eastern California.  相似文献   

7.
To explore the relationship of long-term drought variations with climate warming, the relative humidity from April to September (RH49) in eastern Inner Mongolia was reconstructed based on tree-ring width over the past 135 years. There was also good correlation between the ring-width index and the average April–September temperature at a low frequency. The dry and wet periods in the reconstruction generally coincided with other nearby reconstructions and corresponded with warm and cold periods, respectively, indicating that the low-frequency reconstruction could reflect decadal temperature variations in the study area. It was also found that there was significant correlation between RH49 and temperature on decadal scale, while for RH49 and precipitation, they correlated well on annual scale. Temperature dominates the trend in RH49 at low frequency, and precipitation affects the annual variations. The profound drying trend since 1950 AD in the study area resulted from a large warming component, which outweighed the slight reduction in precipitation. In addition to the land surface temperature influencing drought conditions via water evaporation, the sea surface temperature of the Pacific Ocean may also have affected drought conditions in the study area by dominating water vapor sources. Therefore, temperature is the main cause of regional drought tendencies.  相似文献   

8.
Question: In deciduous‐dominated forest landscapes, what are the relative roles of fire weather, climate, human and biophysical landscape characteristics for explaining variation in large fire occurrence and area burned? Location: The Great Lakes‐St. Lawrence forest of Canada. Methods: We characterized the recent (1959–1999) regime of large (≥ 200 ha) fires in 26 deciduous‐dominated landscapes and analysed these data in an information‐theoretic framework to compare six hypotheses that related fire occurrence and area burned to fire weather severity, climate normals, population and road densities, and enduring landscape characteristics such as surficial deposits and large lakes. Results: 392 large fires burned 833 698 ha during the study period, annually burning on average 0.07%± 0.42% of forested area in each landscape. Fire activity was strongly seasonal, with most fires and area burned occurring in May and June. A combination of antecedent‐winter precipitation, fire season precipitation deficit/surplus and percent of landscape covered by well‐drained surficial deposits best explained fire occurrence and area burned. Fire occurrence varied only as a function of fire weather and climate variables, whereas area burned was also explained by percent cover of aspen and pine stands, human population density and two enduring characteristics: percent cover of large water bodies and glaciofluvial deposits. Conclusion: Understanding the relative role of these variables may help design adaptation strategies for forecasted increases in fire weather severity by allowing (1) prioritization of landscapes according to enduring characteristics and (2) management of their composition so that substantially increased fire activity would be necessary to transform landscape structure and composition.  相似文献   

9.
Aim Feedbacks between climate warming and fire have the potential to alter Arctic and sub‐Arctic vegetation. In this paper we assess the effects and interactions of temperature and wildfire on plant communities across the transition between the Arctic and sub‐Arctic. Location Mackenzie Delta region, Northwest Territories, Canada. Methods We sampled air temperatures, green alder (Alnus viridis ssp. fruticosa) cover, growth, reproduction and age distributions, and overall plant community composition on burned and unburned sites across a latitudinal gradient. Results Mean summer temperature across the study area decreased by 3 °C per degree of increasing latitude (6 °C across the study area). In the northern part of the study area, where seed viability was low, alder was less dominant than at southern sites where seed viability was high. The age structure of alder populations across the temperature gradient was highly variable, except in the northern part of the forest–tundra transition, where populations were dominated by young individuals. Alder growth and reproduction were significantly greater on burned sites (38–51 years following fire) than on unburned sites. North to south across the temperature gradient, vegetation changed from a community dominated by dwarf shrubs and fruticose lichens to one characterized by black spruce (Picea mariana), alder and willows (Salix spp.). Regardless of the position along the temperature gradient, burned sites were dominated by tall shrubs. Main conclusions Temperature limitation of alder abundance and repro‐duction, combined with evidence of recent recruitment on unburned sites, indicates that alder is likely to respond to increased temperature. Elevated alder growth and reproduction on burned sites shows that wildfire also has an important influence on alder population dynamics. The magnitude of alder’s response to fire, combined with observations that burns at the southern margin of the low Arctic are shrub dominated, suggest that increases in the frequency of wildfire have the potential to alter northern vegetation on decadal scales. By creating new seedbeds, fire provides opportunities for colonization that may facilitate the northward movement of tall shrubs. Feedbacks between the global climate system and low Arctic vegetation make understanding the long‐term impact of increasing fire frequency critical to predicting the response of northern ecosystems to global change.  相似文献   

10.
Time-varying fire-climate relationships may represent an important component of fire-regime variability, relevant for understanding the controls of fire and projecting fire activity under global-change scenarios. We used time-varying statistical models to evaluate if and how fire-climate relationships varied from 1902-2008, in one of the most flammable forested regions of the western U.S.A. Fire-danger and water-balance metrics yielded the best combination of calibration accuracy and predictive skill in modeling annual area burned. The strength of fire-climate relationships varied markedly at multi-decadal scales, with models explaining < 40% to 88% of the variation in annual area burned. The early 20th century (1902-1942) and the most recent two decades (1985-2008) exhibited strong fire-climate relationships, with weaker relationships for much of the mid 20th century (1943-1984), coincident with diminished burning, less fire-conducive climate, and the initiation of modern fire fighting. Area burned and the strength of fire-climate relationships increased sharply in the mid 1980s, associated with increased temperatures and longer potential fire seasons. Unlike decades with high burning in the early 20th century, models developed using fire-climate relationships from recent decades overpredicted area burned when applied to earlier periods. This amplified response of fire to climate is a signature of altered fire-climate-relationships, and it implicates non-climatic factors in this recent shift. Changes in fuel structure and availability following 40+ yr of unusually low fire activity, and possibly land use, may have resulted in increased fire vulnerability beyond expectations from climatic factors alone. Our results highlight the potential for non-climatic factors to alter fire-climate relationships, and the need to account for such dynamics, through adaptable statistical or processes-based models, for accurately predicting future fire activity.  相似文献   

11.
Diverse climate sensitivity of Mediterranean tree-ring width and density   总被引:2,自引:0,他引:2  
Understanding long-term environmental controls on the formation of tree-ring width (TRW) and maximum latewood density (MXD) is fundamental for evaluating parameter-specific growth characteristics and climate reconstruction skills. This is of particular interest for mid-latitudinal environments where future rates of climate change are expected to be most rapid. Here we present a network of 28 TRW and 21 MXD chronologies from living and relict conifers. Data cover an area from the Atlantic Ocean in the west to the Mediterranean Sea in the east and an altitudinal gradient from 1,000 to 2,500 m asl. Age trends, spatial autocorrelation functions, carry-over effects, variance changes, and climate responses were analyzed for the individual sites and two parameter-specific regional means. Variations in warm season (May–September) temperature mainly control MXD formation (r = 0.58 to 0.87 from inter-annual to decadal time-scales), whereas lower TRW sensitivity to temperature remains unstable over space and time.  相似文献   

12.
We investigated changes in wildfire risk over the 1901?2002 (ad ) period with an analysis of broad‐scale patterns of July monthly drought code (MDC) variability on 28 forested ecoregions of the North American and Eurasian continents. The MDC is an estimate of the net effect of changes in evapotranspiration and precipitation on cumulative moisture depletion in soils, and is well correlated with annual fire statistics across the circumboreal (explaining 25–61% of the variance in regional area burned). We used linear trend and regime shift analyses to investigate (multi‐) decadal changes in MDC and percentage area affected by drought, and kernel function for analysis of temporal changes in the occurrence rates of extreme drought years. Our analyses did not reveal widespread patterns of linear increases in dryness through time as a response to rising Northern Hemisphere land temperatures. Instead, we found heterogeneous patterns of drought severity changes that were inherent to the nonuniformly distributed impacts of climate change on dryness. Notably, significant trends toward increasing summer moisture in southeastern and southwestern boreal Canada were detected. The diminishing wildfire risk in these regions is coherent with widely reported decreases in area burned since about 1850, as reconstructed by dendrochronological dating of forest stands. Conversely, we found evidence for increasing percentage area affected by extreme droughts in Eurasia (+0.57% per decade; P<0.05) and occurrence rates of extreme drought years in Eurasian taiga (centered principally on the Okhotsk–Manchurian taiga, P=0.07). Although not statistically significant, temporal changes in occurrence rates are sufficiently important spatially to be paid further attention. The absence of a linear trend in MDC severity, in conjunction with the presence of an increase in the occurrence rate of extreme drought years, suggest that fire disturbance regimes in the Eurasian taiga could be shifting toward being increasingly pulse dependent.  相似文献   

13.
Climate and wildfires in the North American boreal forest   总被引:1,自引:0,他引:1  
The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire–climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire–climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire–climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.  相似文献   

14.
This study explores effects of climate change and fuel management on unplanned fire activity in ecosystems representing contrasting extremes of the moisture availability spectrum (mesic and arid). Simulation modelling examined unplanned fire activity (fire incidence and area burned, and the area burned by large fires) for alternate climate scenarios and prescribed burning levels in: (i) a cool, moist temperate forest and wet moorland ecosystem in south‐west Tasmania (mesic); and (ii) a spinifex and mulga ecosystem in central Australia (arid). Contemporary fire activity in these case study systems is limited, respectively, by fuel availability and fuel amount. For future climates, unplanned fire incidence and area burned increased in the mesic landscape, but decreased in the arid landscape in accordance with predictions based on these limiting factors. Area burned by large fires (greater than the 95th percentile of historical, unplanned fire size) increased with future climates in the mesic landscape. Simulated prescribed burning was more effective in reducing unplanned fire activity in the mesic landscape. However, the inhibitory effects of prescribed burning are predicted to be outweighed by climate change in the mesic landscape, whereas in the arid landscape prescribed burning reinforced a predicted decline in fire under climate change. The potentially contrasting direction of future changes to fire will have fundamentally different consequences for biodiversity in these contrasting ecosystems, and these will need to be accommodated through contrasting, innovative management solutions.  相似文献   

15.
The increase in frequency and intensity of wildfires is seriously affecting forest ecosystems, especially in drought-prone areas. Trees’ recovery after fire is related to direct tree damage and is influenced by climate conditions, such as warm temperature and water shortage. In this study, we evaluate the post-fire effects on a Pinus pinaster Aiton forest growing in a hot and dry area of the Mediterranean region by comparing burned trees with severe crown reduction against unburned and not-defoliated trees. Inter-annual analyses of dendrochronology and stable isotopes in tree rings were combined with xylogenesis monitoring to investigate the effects of fire on tree growth, ecophysiological processes and wood formation. Tree-ring and isotope data showed a growth reduction and a decrease in photosynthetic activity in the burned trees, compared to control individuals, in the three years after fire. Further, the monitoring of cambial activity demonstrated a negative influence of warm and dry periods on wood formation, low xylem production, a delay in phenology and a reduction in xylem plasticity in burned trees. Our findings suggest that substantial photosynthetic limitations caused by crown defoliation and recurrent drought events could lead to severe growth decrease and reduction of trees ability to regain the pre-disturbance productivity rates.  相似文献   

16.
Abstract. From 1980–1989, fires burned 32 440 km2 of boreal forest, 200 km south of the forest-tundra border in northern Québec, Canada. An assessment of the impact of fire on tree population densities was carried out by comparing the number of Pinus banksiana and Picea mariana in 83 sites before and after the sites burned in 1981, 1983, 1988 or 1989. Age structure analysis of post-fire populations burned in 1972, 1976 and 1983, along with the rapid exhaustion of the seed bank from burned trees, suggest that the majority of seedlings were established within 3 to 10 yr after fire. Consequently, given the absence of nearby living seed bearers, little (if any) further recruitment can be expected in the even-aged, regenerating populations. According to the tree density comparison (pre-fire vs post-fire), a shift from Picea- to Pinus-dominated communities occurred in most of the sites burned in 1981 or 1983, and in some of the sites burned in 1988 or 1989. The 1988 fire reduced the tree population density by 95% in 10 of the 15 sites; total tree density decreased by at least 75% in 28 out of 40 sites burned in 1989. This suggests that the areas burned in 1988 and 1989 will mainly regenerate as very open forests or lichen-heath communities that are more commonly found in the forest-tundra zone, north of the study area. Fire intensity, short fire interval, and unfavorable climate during and after fires are three plausible mechanisms associated with these post-fire vegetation changes.  相似文献   

17.
Wildfires are the main cause of forest disturbance in the boreal forest of Canada. Climate change studies forecast important changes in fire cycles, such as increases in fire intensity, severity, and occurrence. The geographical information system (GIS) based cellular automata model, BorealFireSim, serves as a tool to identify future fire patterns in the boreal forest of Quebec, Canada. The model was calibrated using 1950–2010 climate data for the present baseline and forecasts of burning probability up to 2100 were calculated using two RCP scenarios of climate change. Results show that, with every scenario, the mean area burned will likely increase on a provincial scale, while some areas might expect decreases with a low emission scenario. Comparison with other models shows that areas forecasted to have an increase in fire likelihood, overlap with predicted areas of higher vegetation productivity. The results presented in this research aid identifying key areas for fire-dependent species in the near future.  相似文献   

18.
《植物生态学报》2017,41(3):279
Aims The Da Hinggan Ling is amongst the areas in China susceptible to climate warming. The objective of this study is to determine the responses of radial growth to temperature variations in Larix gmelinii growing in different parts of the Da Hinggan Ling in the process of climate warming, by using dendrochronological techniques. Methods We collected tree-ring samples from the southern, the middle and the northern parts of the main Da Hinggan Ling, developed site-specific ring-width chronologies, and synthesized tree-ring indices of the southern, the middle and the northern parts of the study area according to the first principal component loading factors for each chronology. The relationships between radial growth in L. gmelinii and temperature variations were determined with correlation analysis, and the differences in the responses of radial growth to temperature variations among various parts were analyzed and compared with principle component analysis. Important findings There were notable discrepancies in the effects of temperature variations on radial growth in L. gmelinii between the southern and the northern parts of the study area (the middle part > the northern part > the southern part). In the southern part, the mean monthly temperature between the previous November and April of the current year had a significant relationship with tree-ring indices (p < 0.05). In the middle part, the mean monthly temperature during March and October of the current year had a significant relationship with tree-ring indices (p < 0.05), and so did the mean monthly temperature during June and August of the previous year (p < 0.05). The mean monthly temperature during April and May of the current year had a highly significant relationship with tree-ring indices in the northern part (p < 0.01). This study suggests that the warmer and drier regional climate condition caused by elevated temperature has resulted in that soil moisture becomes the main factor limiting the radial growth, and the relationship between tree growth and temperature variations signified with aggravated soil drought under climate warming. The productivity in L. gmelinii as reflected by basal area increment experienced a shift response from cold stress to water stress. In addition, the radial growth in L. gmelinii in the Da Hinggan Ling will likely to show a declining trend in the southern and the middle parts, and an increasing trend in the northern part, in response to rapid warming in the coming decades.  相似文献   

19.
Forest fires are a significant and natural element of the circumboreal forest. Fire activity is strongly linked to weather, and increased fire activity due to climate change is anticipated or arguably has already occurred. Recent studies suggest a doubling of area burned along with a 50% increase in fire occurrence in parts of the circumboreal by the end of this century. Fire management agencies' ability to cope with these increases in fire activity is limited, as these organizations operate with a narrow margin between success and failure; a disproportionate number of fires may escape initial attack under a warmer climate, resulting in an increase in area burned that will be much greater than the corresponding increase in fire weather severity. There may be only a decade or two before increased fire activity means fire management agencies cannot maintain their current levels of effectiveness.  相似文献   

20.
Abstract. We present a simple empirical model that allows an estimation of mortality due to spruce budworm (Choristoneura fumiferana) outbreak in relation to fire frequency and site characteristics. The occurrence of a recent spruce budworm outbreak around Lake Duparquet (48° 30’N, 79° 20’W, ca. 300 m a.s.l.) in northwestern Québec permitted a reconstruction of the stand composition before the outbreak, and also of the mortality of Abies balsamea due to the outbreak. The basal area of A. balsamea increases with time since fire in all site types but with increasing values for (1) rock and shallow till, via (2) till and mesic clay up to (3) hydric clay. Mortality (measured as percentage loss of basal area due to the outbreak) increases with time since fire but did not vary with site type. The increasing abundance of A. balsamea with time since fire is mainly responsible for this increase in mortality. Mortality for a specific basal area is, however, lower for the more recently burned stands suggesting a significant residual effect of time since fire. A landscape model integrating mortality due to the outbreak for stands of different age is developed. Both absolute and relative losses of basal area increased with the length of the fire cycles. According to this model, changes in fire cycle could explain a large portion of the spatio-temporal variations observed in outbreak mortality in the southeastern boreal forest of Canada.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号