首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
The modulator of the sea urchin alpha-H2A histone gene promoter is the only enhancer identified in the alpha-histone gene cluster. Binding of a single factor, denoted MBF-1, has previously detected in nuclear extracts from morula and gastrula embryos. Here, we describe the cloning of MBF-1 by screening a cDNA expression library with a tandem array of modulator binding sites. MBF-1 presents no similarity with other DNA binding proteins and contains nine Krüppel like Zn fingers. In vitro translated proteins and a factor from nuclear extracts interact with the modulator with identical specificity. In addition, MBF-1 expressed in human cells transactivates a reporter gene driven by an array of modulator sites. The DNA binding domain consists of the Zn fingers plus an adjacent basic region, while sequences in the N-terminal region mediates the transactivation function. MBF-1 is expressed in the unfertilized egg and in early and late developmental stages thus confirming that it is not a stage specific enhancer binding factor and that silencing of the alpha-H2A gene after hatching is not due to the lack of the transactivator.  相似文献   

14.
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene encodes a receptor-like protein kinase that is transiently expressed during embryogenesis. To determine the intrinsic biochemical properties of the AtSERK1 protein, we have expressed the intracellular catalytic domain as a glutathione S-transferase fusion protein in Escherichia coli. The AtSERK1-glutathione S-transferase fusion protein mainly autophosphorylates on threonine residues (K(m) for ATP, 4 x 10(-6) m), and the reaction is Mg(2+) dependent and inhibited by Mn(2+). A K330E substitution in the kinase domain of AtSERK1 abolishes all kinase activity. The active AtSERK1(kin) can phosphorylate inactive AtSERK1(K330E) protein, suggesting an intermolecular mechanism of autophosphorylation. The AtSERK1 kinase protein was modeled using the insulin receptor kinase as a template. On the basis of this model, threonine residues in the AtSERK1 activation loop of catalytic subdomain VIII are potential targets for phosphorylation. AtSERK1 phosphorylation on myelin basic protein and casein showed tyrosine, serine, and threonine as targets, demonstrating that AtSERK1 is a dual specificity kinase. Replacing Thr-468 with either alanine or glutamic acid not only obliterated the ability of the AtSERK1 protein to be phosphorylated but also inhibited phosphorylation on myelin basic protein and casein, suggesting that Thr-468 is essential for AtSERK-mediated signaling.  相似文献   

15.
16.
17.
18.
19.
Determination of anterior and posterior terminal structures of Drosophila embryos requires activation of two genes encoding putative protein kinases, torso and D-raf. In this study, we demonstrate that Torso has intrinsic tyrosine kinase activity and show that it is transiently tyrosine phosphorylated (activated) at syncytial blastoderm stages. Torso proteins causing a gain-of-function phenotype are constitutively tyrosine phosphorylated, while Torso proteins causing a loss-of-function phenotype lack tyrosine kinase activity. The D-raf gene product, which is required for Torso function, is identified as a 90-kDa protein with intrinsic serine/threonine kinase activity. D-Raf is expressed throughout embryogenesis; however, the phosphorylation state of the protein changes during development. In wild-type embryos, D-Raf is hyperphosphorylated at 1 to 2 h after egg laying, and thereafter only the most highly phosphorylated form is detected. Embryos lacking Torso activity, however, show significant reductions in D-Raf protein expression rather than major alterations in the protein's phosphorylation state. This report provides the first biochemical analysis of the terminal signal transduction pathway in Drosophila embryos.  相似文献   

20.
The expression of the sea urchin L. variegatus U1 snRNA gene is temporally regulated during embryogenesis. Using a microinjection assay we show that a region between 203 and 345 nts 5' of the gene is required for expression. There are four conserved regions between two sea urchin species in the 345 nts 5' to the U1 gene. One region, located at about -300, binds a protein factor which is present in blastula but not gastrula nuclei. Three other potential protein binding sites within the first 200 nts 5' to the gene have been identified using a mobility shift assay and/or DNase I footprinting. Two of these regions bind factors which are not developmentally regulated and one binds a factor which is developmentally regulated. It is likely that the factor which binds at -300 is involved in expression and developmental regulation of the sea urchin U1 snRNA gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号