首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differences in zinc bioavailability among milk and formulas may be attributed to binding of zinc to various ligands. We determined the distribution of zinc and protein at different pHs and zinc and calcium concentrations. We used radiolabelled cow's milk, human milk, whey-predominant (WPF) and casein-predominant (CPF) infant formula. Lowering the pH changed zinc and protein distribution: zinc shifted from pellet (casein) to whey in cow's milk, from fat to whey in human milk and from fat and pellet to whey in formulas. Protein shifted from whey to pellet in human milk and from whey and pellet to fat in formulas. Increasing zinc and calcium concentrations shifted protein and zinc from pellet to whey for cow's milk and from whey and pellet to fat for the formulas. Protein distribution was not affected by calcium or zinc addition in human milk or CPF, while zinc shifted from whey to fat in human milk and from fat and pellet to whey in CPF. Zinc and calcium binding to isolated bovine or human casein increased with pH. At 500 mg/L of zinc, bovine casein bound 32.0 +/- 1.8 and human casein 10.0 +/- 0.9 mg zinc/g protein. At 500 mg/L of calcium, calcium was preferentially bound over zinc. Adding calcium and zinc resulted in 32.0 +/- 1.8 mg zinc/g bound to bovine casein and 17.0 +/- 0.8 mg zinc/g to human casein, while calcium binding was low. Suckling rat pups dosed with 65Zn labelled infant diets were killed and individual tissues were gamma counted. Lower zinc bioavailability was found for bovine milk at pH = 4.0 (%65Zn in liver = 18.7+1.4) when compared to WPF (22.8 +/- 1.6) or human milk (26.9 +/- 0.8). Lowering the pH further decreased zinc bioavailability from human milk, but not from cow's milk or WPF. Knowledge of the compounds binding minerals and trace elements in infant formulas is essential for optimizing zinc bioavailability.  相似文献   

2.
The bioavailability of zinc and manganese from diets used for very low birthweight infants was investigated in a rat pup model using radioisotopes. The effect of protein source and content and of pasteurization was evaluated, and two different approaches for evaluation of zinc and manganese bioavailability in the rat pup model were compared. Zinc and manganese bioavailability from the studied human milk and infant formula for very low birthweight infants was high. Liver uptake of65Zn from labeled premature infant diets in sucklings rat pups was 26–29%, and absorption calculated as the difference between administered dose and nonabsorbed activity 6 h after oral intubation was 93–95%. Retention of manganese calculated as the sum of54Mn retained by organs and carcass was 85–95% from human milk and premature infant formula and absorption calculated from nonabsorbed activity was 83–88% after 6 h. Fortification of early human milk significantly increased the bioavailability of zinc. No effect of pasteurization of human milk was found on zinc or manganese bioavailability. Liver zinc uptake was found to be a more sensitive parameter than absorption for evaluation of diets with a high zinc bioavailability. Measurement of retained activity of manganese in carcass and organs was judged to be the preferred parameter for evaluation of diets with high manganese availability.  相似文献   

3.
Optimum concentration of Cr for infant formulas has not been established. Such components as soy protein or supplemental Fe could influence absorption and retention. Suckling rat pups were used to evaluate the influence of three commercial formulas and human milk, all of which had been incubated with51CrCl3 for 1 h, on the uptake and retention of the added51Cr. After fasting 3 h, the pups were intubated with a single dose of 25 μCi51CrCl3 in either a cow's milk-based formula, an Fe-supplemented cow's milk-based formula, a soy-based formula, or human milk. Six hours later,51Cr was counted in five organs, thymus, blood, and total urine. Absorption of51Cr was low. At 6 h, percent51Cr in blood was <0.2% of the dose, and total51Cr excretion in urine was <1.8%. The uptake and retention of51Cr and its concentration in any of the organs, thymus, blood, and urine were not influenced by different types of formula or by human milk.  相似文献   

4.
In both cow's milk and human milk, zinc was associated with proteins of high molecular weight (greater than 100 000), as judged by analysis with Sephadex G-75. Precipitation of the casein at pH 4.6 and filtration of the resultant acid whey on Sephadex G-25 led, however, to the recovery of about 90% of the zinc as a compound of low molecular weight, which was tentatively identified as zinc citrate. Over 95% of the zinc of cow's milk was sedimented with the casein micelles on ultracentrifugation. Filtration of these micellar caseins on Sephadex G-150 gave two peaks containing zinc, which corresponded to aggregates of alpha-casein-kappa-casein and of alpha-casein-beta-casein. Ultracentrifugation of human milk sedimented only approx. 40% of total zinc. Analysis of sediment and supernatant on Sephadex G-150, however, indicated that about 85% of the zinc was associated with a protein complex of molecular weight greater than 150 000. The major protein of this complex was identified as lactoferrin. A minor zinc-binding component of average molecular weight 30 000 was also observed in the supernatant. The results indicated that zinc is bound to different macromolecules in cow's and human milk. This may be a factor affecting the bioavailability to the human infant of zinc from the two milks, and it is suggested that in human milk lactoferrin may be involved in the uptake of zinc.  相似文献   

5.
Johnston CS  Monte WC 《Life sciences》2000,66(16):1501-1507
The association between early exposure to cow's milk products in infancy and risk for insulin dependent diabetes mellitus (IDDM) is controversial. We examined whether the ingestion of cow's milk-based infant formula altered the expression of the diabetic syndrome in the BB/Wor rat, an animal model of IDDM. Pregnant BB/Wor dams were obtained from the NIH contract colony at the University of Massachusetts and housed under semi-barrier conditions. Rat pups were intubated with 1 to 2 ml of commercially available cow's milk-based infant formula (Enfamil or Nutramigen) or sham intubated (controls) daily from day 12 to day 25 of life. Pups were weaned at day 25 and monitored for glucosuria daily through 120 days of life. All rats including dams consumed a milk-free rat chow and acidified water ad libitum throughout the study. The mean age of disease onset was 4 to 10 days earlier in Nutramigen-fed and Enfamil-fed rats relative to controls (84+/-3, 78+/-2 and 88+/-4 days, respectively); the mean age of disease onset was significantly different between controls and Enfamil-fed animals (p<0.05). At 120 days, 60% (12/20) of control rats developed diabetes versus 100% of animals fed either type of infant formula prior to weaning (15/15:Enfamil-fed; 19/19:Nutramigen-fed) (p<0.05). These data indicate that direct, early ingestion of cow's milk-based formula was related to the expression of diabetes in the BB/Wor rat.  相似文献   

6.
In humans, complementary feeding should be started after 6 months-old; the introduction of any food or water before this time is considered early weaning, which is associated with health problems in adulthood. Cow's milk is a common food introduced to children less than 6 months that has inadequate nutritional composition mainly due to a worse casein: whey protein ratio compared to human milk. We hypothesized that suckling rats fed with cow's milk, rich in bioactive peptides, develop further metabolic dysfunctions. From postnatal day (PN) 14 to 20, Wistar rat pups were divided into 3 groups: rat milk (RM) – pups received rat milk orally in a syringe; cow's milk (CM), pups received cow's milk; CM with high protein (CM-H), CM with twice protein amount of rat milk. Pups were killed on PN21 and PN180. At PN21, CM males had lower visceral fat mass compared with other groups. Serum corticosterone was higher in CM-H males, despite no change in glucocorticoid metabolism in liver and visceral fat. At PN180, CM and CM-H females had greater fat depots and hyperphagia, although no alteration in leptinemia and leptin signaling in hypothalamus. CM-H females had a trend of hypoinsulinemia and significant decrease in HOMA-β, suggesting lower insulin secretion. Males from CM-H group had only lower total body protein mass. CM males had hypercorticosteronemia associated with lower expression of 11βHDS1 in visceral fat. In conclusion, early introduction of cow's milk in neonate rats leads to gender-dependent differences in metabolic and endocrine parameters in the short- and long-term.  相似文献   

7.
Both in vitro and in vivo, the use of a radioisotope can significantly enhance the sensitivity of methods for trace element studies. An essential prerequisite for this approach, however, is that the added (extrinsic) radiolabel equilibrates with the native (cold) element within all compartments of the diet. By using ultracentrifugation, ultrafiltration, and gel filtration chromatography, we have shown that the method is valid for zinc, copper, and manganese when using milks and formulas. For iron, however, extrinsic labeling does not necessarily yield results similar to the native distribution. We have used extrinsic labeling to follow the distribution of Zn, Cu, and Mn between high molecular weight compounds (proteins) and low molecular weight complexes in human and bovine milk after in vitro proteolysis. Peptic digestion at various pHs and pancreatic digestion for varying times were used to mimic digestion in the infant. After limited proteolysis, a large proportion of trace minerals in human milk was found in the low molecular weight fraction, whereas in cow's milk a large proportion was bound to incompletely digested casein. These findings may, at least in part, explain the higher bioavailability of trace elements from human milk compared to cow's milk.  相似文献   

8.
Formula-fed infants often have lower serum selenium levels than breast-fed infants. Although no deleterious effects have been correlated to this finding, supplementation of formula with selenium is considered. In this study, we investigated the uptake and retention by suckling rat pups of 75Se from selenite, selenate, and selenomethionine added to infant formula. The molecular distribution of 75Se in liver, kidney, intestine, and plasma was followed by gel-filtration chromatography on Superose 12. 75Se-uptake was most rapid from selenomethionine (70% at 1 hr), followed by selenate (51%) and selenite (29%). This difference was explained by a higher retention of 75Se in the stomach and small intestinal wall of pups given selenite supplement. Plasma distribution of 75Se as studied by gel filtration was also different, with a higher proportion of 75Se from selenomethionine being protein-bound than from selenite or selenate. Similarly, a larger proportion of 75Se from selenomethionine became protein-bound in the liver than from selenite or selenate. In conclusion, although whole body retention after 24–48 hr was similar, the metabolic fate of selenium varies considerably with the form of selenium added to formula. Further studies are needed to study the long-term consequences of selenium accumulated in different body compartments.  相似文献   

9.
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins’ sequences. Release of peptides was concentrated to specific regions, such as residues 70–92 of β-casein in human milk, residues 39–55 of β-lactoglobulin in infant formula, and residues 57–96 and 145–161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.  相似文献   

10.
Despite the widespread agreement that low-fat milk should not be used during infancy, there is a sizable portion of infants in the United States who were fed a diet that included low-fat milk (less than or equal to 2% fat). In 1985, 14% of infants 8 months old, 20% of infants 10 months old, and 32% of infants 12 months old were fed low-fat milk. The reasons given most often by mothers for low-fat milk use was their consideration that low-fat milk has less fat than whole cow's milk and that low-fat milk use was recommended/suggested by their physician. Nutrient intakes of infants fed low-fat milk are compared to those of infants fed whole cow's milk and infant formula. Except for fat, nutrient intakes of infants fed low-fat milk or whole cow's milk were similar. A majority of infants fed either low-fat milk or whole cow's milk received amounts of sodium, potassium, and chloride that exceeded the recommended safe and adequate ranges and amounts of iron below the RDA. These data are considered in relation to dietary requirements during infancy.  相似文献   

11.
The onshore and at-sea cycles of females, suckling behavior of pups and their milk intake were studied in Steller sea lions ( Eumetopias jubatus ) during 1983 at Año Nuevo Island, California. Females averaged approximately 21 h ashore and 36 h at sea. The trips to sea lengthened as pups aged, resulting in an overall decline in female time ashore to 30% by the sixth week following parturition. Activity budgets of pups showed no significant differences among suckling time, age and sex. Milk intake, estimated using labeled water studies, revealed that heavier pups consumed more milk than lighter ones (milk ingestion in ml/d = 4.26 + 0.0687 [Pup Mass in kg]). Mean milk intake was 1.78 ± 0.33 liters/d. Mean pup growth rate was 0.38 ± 0.1 kg/d. The results suggest that female attendance patterns are shaped by the increasing nutritional demands of growing pups and their increasing efficiency at suckling.  相似文献   

12.
Casein: a milk protein with diverse biologic consequences   总被引:1,自引:0,他引:1  
The consequences of bovine milk consumption are diverse, some of which are potentially deleterious. Although certain cultures shun cow's milk or milk-based products, Western societies consume large quantities of cow's milk. Although there are stronger similarities between bovine whey proteins and human whey proteins, the quantity and nature of casein in cow's milk differ markedly from human milk. We propose that the consequences of diets based on bovine casein should be more closely evaluated and certainly expanded beyond the simplistic approach of growth. What is good for the goose may be good for the gander, but what is good for the cow could be harmful to the human.  相似文献   

13.
The purpose of this study was to investigate if the intestinal absorption of copper in drinking water is altered in the presence of complexing agents from a fulvic acid mixture and an infant formula powder. Ten to twelve day old rat pups were given a single oral dose of radio-labeled Cu in deionized water (0.93 mg Cu/l), in water containing fulvic acids (10 mg/l), in infant formula mixed with deionized water, or in infant formula mixed with water containing fulvic acids. Six hours after dosage, radioactive Cu was analyzed in the mucosa of the small intestine, the liver and the remaining carcass (excluding the liver and gastrointestinal tract) by gamma counting. Dialysis and centrifugation experiments showed that Cu was complexed by components in the fulvic acid and formula mixtures, although the presence of fulvic acids in the water did not alter the Cu fractionation in the formula. The fractional Cu uptake (% of dose) from the intestinal lumen to the mucosa was not markedly changed by the presence of the chelating agents. However, the retention of Cu in the intestinal mucosa was increased by both fulvic acids and formula. Concomitantly, the absorption rate of Cd to the circulatory system was decreased. No interactive effect between fulvic acids and formula was found on the Cu absorption. These findings indicate that the water quality may be an important determinant of the rate of intestinal Cu absorption from drinking water. Moreover, in the future risk assessment of copper in drinking water, the possibility of alterations in absorption of drinking-water Cu has to be considered when the drinking water is used for cooking.  相似文献   

14.
Differences in iron bioavailability from human milk and milk formulas may in part be due to differences in lipid composition. We investigated the short and long term effects of diets based on different fats [corn, coconut, olive, or soy oil, human milk fat (HMF) and a formula fat blend (FF)] on iron absorption in rats. Suckling rat pups dosed with 59Fe-labeled diets containing different fat sources were killed after 6 h, and blood and individual tissues were counted. Iron availability was estimated by % 59Fe in blood. Pups dosed with a more saturated fat (coconut oil) had a higher % 59Fe in blood than those fed other fat sources. Weanling rats were used to determine iron bioavailability from fat sources using both the hemoglobin repletion method and whole body counting. Hemoglobin regeneration was significantly higher for rats fed the HMF diet (8.4 +/- 0.5 g/dl) than from the FF diet (6.5+/-0.6 g/dl) or the corn oil diet (less saturated) (6.4 +/- 0.3 g/dl). Rats fed diets based on coconut oil (more saturated) had significantly higher % 59Fe retention (61.6 +/- 1.4) than rats fed diets based on FF (49.8 +/- 3.4). There was a significant positive association between oleic acid in the diet and oleic acid in the intestinal mucosa (r = 0.95, p < 0.05) and between linoleic acid in the diet and linoleic acid in the intestinal mucosa (r = 0.97, p < 0.05) suggesting that the dietary treatment altered the fatty acid composition of the brush border membrane. Our results suggest that saturated fats may increase iron absorption and that part of this may be achieved by changes in the fatty acid composition of the intestinal mucosa. Hemoglobin regeneration and % 59Fe retention data suggest that differences in iron absorption from infant diets may in part be due to differences in fat composition. Therefore, lipid composition of infant formulas should also be taken into consideration as a factor influencing iron bioavailability.  相似文献   

15.
Objective: The suckling period is one potentially “critical” period during which nutritional intake may permanently “program” metabolism to promote increased adult body weight and insulin resistance in later life. This study determined whether fructose introduced during the suckling period altered body weight and induced changes in fatty acid transport leading to insulin resistance in adulthood in rats. Methods and Procedures: Pups were randomly assigned to one of four diets: suckle controls (SCs), rat milk substitute formula (Rat Milk Substitute), fructose‐containing formula (Fructose), or galactose‐containing formula (Galactose). Starting at weaning, all pups received the same diet; at 8 weeks of age, half of the SC rats began ingesting a diet containing 65% kcal fructose (SC‐Fructose). This continued until animals were 12 weeks old and the study ended. Results: At weeks 8, 10, and 11, the Fructose group weighed more than SC and SC‐Fructose groups (P < 0.05). At weeks 8 and 10 of age, the Fructose group had significantly higher insulin concentrations vs. rats in the SC‐Fructose group. 3H‐Palmitate transport into vesicles from hind limb skeletal muscle was higher in Fructose vs. SC rats (P < 0.05). CD36 expression was increased in the sarcolemma but not in whole tissue homogenates from skeletal muscle from Fructose rats (P < 0.05) suggesting a redistribution of this protein associated with fatty acid uptake across the plasma membrane. This change in subcellular localization of CD36 is associated with insulin resistance in muscle. Discussion: Consuming fructose during suckling may result in lifelong changes in body weight, insulin secretion, and fatty acid transport involving CD36 in muscle and ultimately promote insulin resistance.  相似文献   

16.
Maillard reaction and lactose isomerization may be induced during the processing involved in the manufacture of infant formulas. The effects of dehydratation and sterilization in an infant formula on iron and zinc bioavailability were studied. A powder (PIF), previously reconstituted, and an in-bottle-sterilized liquid infant formula (LIF), from the same manufacturer, were evaluated using an in vitro method and in suckling rats. After in vitro digestion the dialyzed and non-dialyzed soluble, and insoluble fractions of iron and zinc were separated. Two-week-old rat pups were fed PIF or LIF in a drinking bottle for 7 days. Infant formula intake (I), body weight and the fecal and urinary excretions were monitored and the following parameters calculated: apparent absorption (A), retention (R), and the coefficients %A/I, %R/A and %R/I. Soluble iron (dialyzed) and zinc (non-dialyzed) were higher (p < 0.001) in LIF than PIF after in vitro digestion. Insoluble iron was similar in both infant formulas but insoluble zinc was lower (p < 0.05) in LIF than PIF. Food intake (p = 0.045) and body weight on day 4 (p < 0.05) and on day 7 (p < 0.001) were lower in LIF compared to PIF. A, R (p < 0.05 for both minerals), %A/I, and %R/I (p < 0.001 and p < 0.05 for iron and zinc, respectively) were significantly lower in rats fed LIF. Similarly, the %R/A of iron was lower (p < 0.001) in this group. Hematocrit and hemoglobin did not show significant differences. Iron and zinc levels in liver, spleen and erythrocytes were similar in both groups, but skin iron concentration was higher in LIF. Therefore, in contrast with the in vitro results, consumption of the in-bottle-sterilized formula determines lower iron and zinc bioavailability compared to the reconstituted powder infant formula.  相似文献   

17.
The object of this study was to prepare a chemically derived milk substitute that is compatible with mouse-milk. Milk was independently collected from ICR, BALB/c, and FVB/N mice, and analyzed for the protein, fat, and mineral contents to formulate a milk substitute. Thereafter, ICR mouse pups were artificially reared on the milk substitute to evaluate the rate of increase of their body weights. A gastric cannula tube was placed through the esophageal way into 8-day-old ICR pups, and the mice were fed with the milk substitute by computer-regulated infusion pumping by the pup-in-a-cup method. The analytical mean values of total protein and total fat in milk from ICR, BALB/c, and FVB/N mice were 10.23 +/- 0.49% and 21.34 +/- 1.31%, respectively. The milk substitute was constituted from purified bovine casein and whey proteins, five edible oils, including MCT oil, minerals, and vitamins. After 8 days of artificial rearing with the new milk substitute, 36 of the 42 pups had survived, and the growth rate of these mice was not significantly different from that of maternally reared littermate pups. In conclusion, we have succeeded in the preparation of a chemically derived milk substitute for mice pups which is available for clarifying the roles of dietary components such as milk-bone substance during the suckling period in mice pups including those of knockout and transgenic mice.  相似文献   

18.
The purpose of this study was to determine the concentration and distribution of lead, calcium, iron, zinc, and copper in major fractions (fat, casein, whey) of mature milk from 38 nursing adult women with low environmental lead exposure. The potential associations between milk lead and maternal blood lead and between milk and blood lead and essential mineral data (nutritional status, dietary intake, and milk concentration) were investigated. Maternal blood lead (geometric mean, 60 μg/L) was negatively associated, although modestly, with dietary calcium intake (r=−0.32, p=0.02). Lead in whole milk (geometric mean, 1.2 μg/L) was positively associated with calcium in whole milk (r=0.56, p=0.005). Distribution of lead in milk fractions was 63%, 28%, and 9%, in whey, fat, and casein, respectively. Milk distribution of essential minerals was 67–76%, 17–18%, and 7–17% in whey, fat, and casein, respectively. Lead in milk whey was positively associated with lead in maternal blood (r=0.49, p=0.02). However, milk lead was not affected by nutritional status, dietary intake, and milk composition of the essential minerals. The high percentage of lead in the milk whey fraction, as seen for the essential minerals, suggests that most lead in human milk is bioavailable to the infant.  相似文献   

19.
Epidermal growth factor (EGF) is trophic for varying regions of the developing gastrointestinal tract (GIT) of suckling rats. The presence of large amounts of EGF in milk from various species, combined with low production of EGF by suckling animals, led to speculation that milk is a major source of EGF for suckling rats. We report that short-term fasting (8 hr) of 12-day-old suckling rats resulted in a significant decrease in the levels of immunoreactive EGF (irEGF) in the GIT. Pups refed by lactating mothers for 1 to 4 hr exhibited an increase in irEGF to original levels, whereas pups fed a rat milk substitute by gastric gavage did not have an increase in irEGF content. The irEGF levels in the GIT of pups that were manually fed normal rat milk, or rat milk substitute supplemented with EGF, returned to the prefasted levels. Fasted suckling rats refed 2 ml of rat milk in 2 h exhibited significantly higher level of irEGF in the GIT than did those refed with 0.5 ml in 45 min. Since rat milk irEGF exists in three distinct forms (A, B, and C; C is equal to authentic submandibular gland EGF, the irEGF forms in the GIT were characterized by native polyacrylamide gel electrophoresis. In the stomach luminal contents of the fed suckling rats, only the larger form, Peak B, was observed. Both the luminal content and the mucosa scrapings of all other segments of all groups contained only Form D (comigrating with desarginyl EGF), a metabolic derivative of EGF. All forms were immunoreactive, exhibited receptor binding, and stimulated DNA synthesis in growth-arrested fibroblasts. The rapid changes in EGF within the GIT of suckling rats suggest the EGF can acutely modify some GIT functions of suckling rats.  相似文献   

20.
The transport of manganese from extrinsically labeled human milk, bovine milk and infant formula was studied by the everted intestinal sac method. Tissue/mucosal flux data indicated that transport of manganese into the intestinal tissue was significantly greater with bovine milk and formula than from human milk. Similarly, the total flux of manganese from the mucosal to serosal surface was less when human milk was used. Smaller molecular weight manganese binding ligands isolated from the milk samples enhanced the mucosal to tissue movement of manganese as contrasted to the higher molecular weight manganese binding ligands. Most significantly the data suggest that the transport and uptake of manganese is less in the presence of human milk and its isolated manganese fractions than it is in bovine milk or infant formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号