首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proteins are the central functional constituents in all living organisms ranging from viruses, bacteria, yeast, and plants to mammals. All of these biopolymers that are formed by natural biosynthetic pathways are composed of a genetically determined sequence of the 20 so-called natural amino acids. The physical and chemical properties of proteins are a reflection of the side chains of each of the component amino acids. However, for some purposes it would be very desireable to have amino acids with side chains of various selected physical chemical properties, such as a keto group, a crosslinker, or a NMR probe group, incorporated into the protein. Although chemical and biochemical methods for modifying amino acid moieties in proteins have been achieved, recent successes in incorporating unnatural amino acids in vivo open entirely new avenues for determining protein functions in vivo and for the creation of unnatural proteins with novel functionalities. Several examples by employing the novel activity of unnatural amino acids have shown significant roles in both basic research and biotechnology.  相似文献   

2.
Unnatural amino acids as probes of protein structure and function   总被引:5,自引:0,他引:5  
Nonsense suppression methodology, for incorporating unnatural amino acids into proteins, has enabled a wide range of studies into protein structure and function using both in vitro and in vivo translation systems. Although methodological challenges remain, scores of unnatural amino acids have been employed that include both subtle and dramatic variants of the natural set. A number of insights that would not have been possible using conventional site-directed mutagenesis have been gained.  相似文献   

3.
The SH group of 2-mercaptoethylpyridine adds to the double bond of dehydroalanine residues in alkali-treated casein and acetylated casein to form S-β-(2-pyridylethyl)-L-cysteine (2-PEC) side chains. The generated cysteine derivative can be assayed, after protein hydrolysis, by standard amino acid analysis techniques. The novel transformation may be useful for assessing chemical and biological functions of dehydroalanine residues in proteins.  相似文献   

4.
Improved and efficient techniques have led to an explosive growth in the application of site-directed mutagenesis to the study of enzymes. However, the limited availability of only those 20 amino acids that are translated by the genetic code has prevented the systematic variation of an amino acid's properties in order to define more precisely its role in the catalytic mechanism of an enzyme. An approach is being examined that combines the high specificity of site-directed mutagenesis with the flexibility of chemical modification to overcome these limitations. A set of reagents has been synthesized and reacted with a cysteine model to produce a series of amino acid structural analogs at appreciable rates and in good overall yields. The selective incorporation of these analogs in place of important functional amino acids in a protein will allow a more detailed examination of the role of that amino acid.  相似文献   

5.
The adaptability of Escherichia coli thioredoxin to the substitution of a series of non-natural amino acids has been investigated. Different thiosulfonated alkyl groups were inserted into the hydrophobic core of the protein in position 78 via disulfide bonding with a buried cysteine residue as previously described (Wynn R, Richards FM. 1993. Unnatural amino acid packing mutants of Escherichia coli thioredoxin produced by combined mutagenesis/chemical modification techniques. Protein Sci 2:395-403). The side chains added to the cysteine included methyl, ethyl, n-propyl, n-butyl, n-pentyl, and cyclo-pentyl derivatives. The side chains appear to exploit the presence of the large cavities to incorporate these variant forms, enabling the protein to fold and have some activity. Solution structural and kinetic data suggested that these substitutions had little effect on the overall fold of the protein. Thermodynamic data revealed that the entropic effect of restricting the side chains in the folded protein has an effect on the stability. The variant forms of thioredoxin have different propensities to form dimers despite the limited structural perturbations. Molecular modeling studies allow the conformation of the side chains to be assessed.  相似文献   

6.
The structures of several variants of staphylococcal nuclease with long flexible unnatural amino acid side chains in the hydrophobic core have been determined by X-ray crystallography. The unnatural amino acids are disulfide moieties between the lone cysteine residue in V23C nuclease and methane, ethane, 1-n-propane, 1-n-butane, 1-n-pentane, and 2-hydroxyethyl thiols. We have examined changes in the core packing of these mutants. Side chains as large as the 1-n-propyl cysteine disulfide can be incorporated without perturbation of the structure. This is due, in part, to cavities present in the wild-type protein. The longest side chains are not well defined, even though they remain buried within the protein interior. These results suggest that the enthalpy-entropy balance that governs the rigidity of protein interiors favors tight packing only weakly. Additionally, the tight packing observed normally in protein interiors may reflect, in part, the limited numbers of rotamers available to the natural amino acids.  相似文献   

7.
Stacking interactions between amino acids and bases are common in RNA-protein interactions. Many proteins that regulate mRNAs interact with single-stranded RNA elements in the 3' UTR (3'-untranslated region) of their targets. PUF proteins are exemplary. Here we focus on complexes formed between a Caenorhabditis elegans PUF protein, FBF, and its cognate RNAs. Stacking interactions are particularly prominent and involve every RNA base in the recognition element. To assess the contribution of stacking interactions to formation of the RNA-protein complex, we combine in vivo selection experiments with site-directed mutagenesis, biochemistry, and structural analysis. Our results reveal that the identities of stacking amino acids in FBF affect both the affinity and specificity of the RNA-protein interaction. Substitutions in amino acid side chains can restrict or broaden RNA specificity. We conclude that the identities of stacking residues are important in achieving the natural specificities of PUF proteins. Similarly, in PUF proteins engineered to bind new RNA sequences, the identity of stacking residues may contribute to "target" versus "off-target" interactions, and thus be an important consideration in the design of proteins with new specificities.  相似文献   

8.
The advent of recombinant DNA techniques provides protein chemistry with a powerful tool for designing and modifying, via site-directed mutagenesis, the physicochemical characteristics of enzymes. Among these characteristics is thermostability. Since site-directed mutagenesis has to be applied to replace as few amino acids as possible, it is necessary to know the rules that govern protein thermostability. To gain insight into these rules, we have performed the analysis of replacements between mesostable/thermostable counterparts of isoenzymes, based on a table of replacements for tyrosinases of Neurospora crassa. Upon prediction of the secondary structure and hydropathic profiles, we found that replacements are conservative in type and length of secondary structure and that they occur preferentially in external regions of the proteins. Some tentative rules for applying site-directed mutagenesis to proteins are proposed and discussed.  相似文献   

9.
The genetic code of living organisms has been expanded to allow the site-specific incorporation of unnatural amino acids into proteins in response to the amber stop codon UAG. Numerous amino acids have been incorporated including photo-crosslinkers, chemical handles, heavy atoms and post-translational modifications, and this has created new methods for studying biology and developing protein therapeutics and other biotechnological applications. Here we describe a protocol for reprogramming the amino-acid substrate specificity of aminoacyl-tRNA synthetase enzymes that are orthogonal in eukaryotic cells. The resulting aminoacyl-tRNA synthetases aminoacylate an amber suppressor tRNA with a desired unnatural amino acid, but no natural amino acids, in eukaryotic cells. To achieve this change of enzyme specificity, a library of orthogonal aminoacyl-tRNA synthetase is generated and genetic selections are performed on the library in Saccharomyces cerevisiae. The entire protocol, including characterization of the evolved aminoacyl-tRNA synthetase in S. cerevisiae, can be completed in approximately 1 month.  相似文献   

10.
The biotechnological application of enzymes necessitates a permanent quest for new biocatalysts. Among others, improvement of catalytic activity, modification of substrate specificity, or increase in stability of the enzymes are desirable goals. The exploration of homologous enzymes from various sources or DNA-based methods, like site-directed mutagenesis or directed evolution, yield an incredible variety of biocatalysts but they all rely on the restricted number of canonical amino acids. Chemistry offers an almost unlimited palette of additional modifications which can endow the proteins with improved or even completely new properties. Numerous techniques to furnish proteins with non-natural amino acids or non-proteinogenic modules have been introduced and are reviewed with special focus on expressed protein ligation, a method that combines the potential of protein biosynthesis and chemical synthesis. An erratum to this article can be found at  相似文献   

11.
Many biophysical techniques that are available to study the structure, function and dynamics of cellular constituents require modification of the target molecules. Site-specific labelling of a protein is of particular interest for fluorescence-based single-molecule measurements including single-molecule FRET or super-resolution microscopy. The labelling procedure should be highly specific but minimally invasive to preserve sensitive biomolecules. The modern molecular engineering toolkit provides elegant solutions to achieve the site-specific modification of a protein of interest often necessitating the incorporation of an unnatural amino acid to introduce a unique reactive moiety. The Amber suppression strategy allows the site-specific incorporation of unnatural amino acids into a protein of interest. Recently, this approach has been transferred to the mammalian expression system. Here, we demonstrate how the combination of unnatural amino acid incorporation paired with current bioorthogonal labelling strategies allow the site-specific engineering of fluorescent dyes into proteins produced in the cellular environment of a human cell. We describe in detail which parameters are important to ensure efficient incorporation of unnatural amino acids into a target protein in human expression systems. We furthermore outline purification and bioorthogonal labelling strategies that allow fast protein preparation and labelling of the modified protein. This way, the complete eukaryotic proteome becomes available for single-molecule fluorescence assays.  相似文献   

12.
A strategy based on complexation-assisted condensation of large synthetic protein fragments and mitochondria-mediated stereospecific heme insertion has been utilized to assemble a functional molecule corresponding to native horse heart holocytochrome c. This original approach offers the unique opportunity of selective modifications both in the C-terminal and in the N-terminal regions of the apoprotein and may represent an useful alternative to site-directed mutagenesis, particularly when D-amino acids, chemically and/or isotopically modified or other unnatural amino acids have to be introduced in this important molecule. The present result is an example of how solid phase peptide synthesis of large protein fragments in conjunction with the availability of a specific recognition process may extend the potentiality of the chemical approach to the synthesis of an entire protein.  相似文献   

13.
构筑蛋白质的编码信息存在于高度保守的密码子表中,而生物体仅利用20种天然氨基酸,就能排列组合出不同的蛋白质来行使多种生物学功能。通过合成生物学的飞速发展,使得在蛋白质合成中可控地引入非天然氨基酸成为可能。这极大地拓展了蛋白质的结构和功能,并为生物学工具的开发和生物生理过程的研究提供了便利。具有活性基团的非天然氨基酸可以广泛地应用于蛋白质结构研究、蛋白质功能调控以及新型生物材料构建和医药研发等诸多领域。基因密码子拓展技术利用正交翻译系统,通过重新分配密码子改造中心法则,可以在蛋白质的指定位点引入非天然氨基酸。系统地介绍了目前提升密码子拓展技术插入非天然氨基酸效率的方法,包括tRNA以及氨酰tRNA合成酶的各种突变方法和翻译辅助因子的改造。汇总了利用古细菌酪氨酰tRNA合成酶插入的非天然氨基酸和突变位点并总结了密码子拓展技术在生物医药领域的前沿进展。最后讨论了该项技术目前所面临的挑战,如可利用的密码子数量不多、正交翻译系统的种类有限和非天然氨基酸多插效率低下。希望能够帮助研究者建立适合的非天然氨基酸插入方法并推动密码子拓展技术进一步发展。  相似文献   

14.
It is now routine using automatic Edman microsequencing to determine the primary structure of peptides or proteins containing natural amino acids; however, a deficiency in the ability to readily sequence peptides containing unnatural amino acids remains. With the advent of synthetic peptide chemistry, combinatorial chemistry, and the large number of commercially available unnatural amino acids, there is a need for efficient and accurate structure determination of short peptides containing many unnatural amino acids. In this study, 35 commercially available alpha-unnatural amino acids were selected to determine their elution profile on an ABI protein sequencer. Using a slightly modified gradient program, 19 of these 35 PTH amino acids can be readily resolved and distinguished from common PTH amino acids at low picomole levels. These unnatural amino acids in conjunction with the 20 natural amino acids can be used as building blocks to construct peptide libraries, and peptide beads isolated from these libraries can be readily microsequenced. To demonstrate this, we synthesized a simple tripeptide "one-bead one-compound" combinatorial library containing 14 unnatural and 19 natural amino acids and screened this library for streptavidin-binding ligands. Microsequencing of the isolated peptide-beads revealed the novel motif Bpa-Phe(4-X)-Aib, wherein X = H, OH, and CH3.  相似文献   

15.
Glycine receptors (GlyRs) are ligand-gated chloride channel proteins composed of alpha- and beta-subunits. GlyRs are located to and anchored at postsynaptic sites by the receptor-associated protein gephyrin. Previous work from our laboratory has identified a core motif for gephyrin binding in the cytoplasmic loop of the GlyR beta-subunit. Here, we localized amino acid residues implicated in gephyrin binding by site-directed mutagenesis. In a novel transfection assay, a green fluorescent protein-gephyrin binding motif fusion protein was used to monitor the consequences of amino acid substitutions for beta-subunit interaction with gephyrin. Only multiple, but not single, replacements of hydrophobic side chains abolished the interaction between the two proteins. Our data are consistent with gephyrin binding being mediated by the hydrophobic side of an imperfect amphipathic helix.  相似文献   

16.
Previous reports (J. Cui and R. L. Somerville, J. Bacteriol. 175:1777-1784, 1993; J. Yang, H. Camakaris, and A. J. Pittard, J. Bacteriol. 175:6372-6375, 1993) have identified a number of amino acids in the N-terminal domain of the TyrR protein which are critical for activation of gene expression but which play no role in TyrR-mediated repression. These amino acids were clustered in a single region involving positions 2, 3, 5, 7, 9, 10, and 16. Using random and site-directed mutagenesis, we have identified an additional eight key amino acids whose substitution results in significant or total loss of activator function. All of these are located in the N-terminal domain of TyrR. Alanine scanning at these eight new positions and at five of the previously identified positions for which alanine substitutions had not been obtained has identified three amino acids whose side chains are critical for activation, namely, D-9, R-10, and D-103. Glycine at position 37 is also of critical importance. Alanine substitutions at four other positions (C-7, E-16, D-19, and V-93) caused partial but significant loss of activation, indicating that the side chains of these amino acids also play a contributing role in the activation process.  相似文献   

17.
The manipulation of the chemical structure of proteins beyond what is feasible with standard genetics, offers a powerful strategy to investigate protein mechanisms. By allowing the incorporation of biophysical probes, unnatural amino acids, and post-translational modifications in proteins, chemistry-driven approaches have greatly contributed to the understanding of the molecular basis of protein function.  相似文献   

18.
Identifying glycoconjugate-binding domains. Building on the past.   总被引:1,自引:0,他引:1  
G D Holt 《Glycobiology》1991,1(4):329-336
The molecular details of how glycoconjugate-binding proteins interact with their ligands have been revealed by a variety of techniques. For example, proteases, chemical-modifying reagents and antibodies have served as effective probes of lectin functional domains. Protein crystallography has providing insight into how lectins are structured, and aided in determining which amino acids in these proteins are positioned appropriately for bond formation with glycoconjugates. In addition, the characterization and sequencing of naturally occurring, non-functional lectin variants have led to the identification of amino acids which play critical roles in a lectin's glycoconjugate-binding domain. Similarly, studies of lectin mutants produced by site-directed mutagenesis, and of synthetic peptides that mimic lectin binding properties, have demonstrated the importance of particular amino acids for glycoconjugate binding. An alternate approach to understanding lectin functional domains has been to compare the primary sequences of these proteins to reveal common sequence elements which allow them to be organized into families. For example, the discovery of amino acid homologies dispersed over long segments of the primary sequences of several lectins has suggested that many of these proteins have a related three-dimensional organization. In addition, the identification of more highly focused regions of sequence homology has indicated that many structures within the lectin glycoconjugate-binding domains themselves may be conserved. Scanning protein data banks for sequences homologous to known lectins has led to the identification of several previously unrecognized lectins, and aided in determining what portions of these proteins function in their glycoconjugate-binding domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition.  相似文献   

20.
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号