首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main aim of the present study was to find out whether the dynamic characteristics of responses of limb extensor muscles to labyrinth stimulation were modified by the proprioceptive input elicited by appropriate displacements of the corresponding limb extremity. In cats decerebrated at precollicular or intercollicular level, the multiunit EMG activity of the medial head of the triceps brachii was recorded during roll tilt of the animal at the frequency of 0.15 Hz, +/- 10 degrees leading to selective stimulation of labyrinth receptors. This stimulation was then tested several times at regular intervals of 2 to 6 min for several hours while maintaining the ipsilateral forelimb in the horizontal extended position, i.e. with the plantar surface of the foot lying on the tilting table, or during passive flexion of the forepaw in plantar or dorsal direction. In all the experiments in which the forelimb was in the control position, the multiunit EMG responses of the triceps brachii were characterized by an increased activity during side-down tilt of the animal and a decreased activity during side up tilt. These responses were related to animal position and not to the velocity of animal displacement, thus being attributed to stimulation of macular, utricular receptors. Static displacement of limb extremities following plantar flexion of the forepaw greatly decreased the amplitude of the EMG modulation and thus the gain of the first harmonic component of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This reduced gain was due not only to a reduced number of motor units recruited during labyrinth stimulation, but also to a reduced modulation of firing rate of the active motor units, as shown by recording the activity of individual motor units. On the other hand, displacement of the same extremity in the opposite direction, i.e. following dorsiflexion of the forepaw, enhanced the amplitude of the EMG modulation and thus the gain of the multiunit EMG responses of the ipsilateral triceps brachii to animal tilt. This finding was mainly due to an increased recruitment of motor units during side-down tilt, although an increased modulation of the firing rate of individual motor units could not be excluded. In both instances, no changes in the phase angle to the responses were observed. The changes in response gain described above depended on the amount of passive displacement of the forepaw and persisted unmodified throughout the new maintained position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Repeated stimulation of motor units (MUs) causes an increase of the force output that cannot be explained by linear summation of equal twitches evoked by the same stimulation pattern. To explain this phenomenon, an algorithm for reconstructing the individual twitches, that summate into an unfused tetanus is described in the paper. The algorithm is based on an analytical function for the twitch course modeling. The input parameters of this twitch model are lead time, contraction and half-relaxation times and maximal force. The measured individual twitches and unfused tetani at 10, 20, 30 and 40 Hz stimulation frequency of three rat motor units (slow, fast resistant to fatigue and fast fatigable) are processed. It is concluded that: (1) the analytical function describes precisely the course of individual twitches; (2) the summation of equal twitches does not follow the results from the experimentally measured unfused tetani, the differences depend on the type of the MU and are bigger for higher values of stimulation frequency and fusion index; (3) the reconstruction of individual twitches from experimental tetanic records can be successful if the tetanus is feebly fused (fusion index up to 0.7); (4) both the maximal forces and time parameters of individual twitches subtracted from unfused tetani change and influence the course of each tetanus. A discrepancy with respect to the relaxation phase was observed between experimental results and model prediction for tetani with fusion index exceeding 0.7. This phase was predicted longer than the experimental one for better fused tetani. Therefore, a separate series of physiological experiments and then, more complex model are necessary for explanation of this distinction.  相似文献   

3.
The separate contributions of the recruitment level and of the firing rate of the motor units on the soundmyogram and electromyogram time domain parameters were investigated during stimulation of the motor nerve of the cat gastrocnemius muscle. Upon orderly increase in the number of active motor units at a fixed firing rate, both the peak to peak amplitude (P-Pmax) and the root mean square (RMS) of the sound myogram increased. At full recruitment the increase in firing rate from 2.5 to 50 Hz induced an exponential decline in the P-Pmax. The RMS, however, followed this trend only from 15 to 50 Hz while showing an increase from 2.5 to 10 Hz. During simultaneous changes of recruitment and firing rate, the effect of increasing the number of motor units on the P-Pmax and RMS is dampened by the increasing firing rate. The peak to peak amplitude of the EMG compound action potential increased with the number of active motor units. Moreover, its amplitude was not influenced by the firing rate. The EMG RMS, however, increases as a function of the firing rate. The results indicate that both the number and the firing rate of the active motor units contribute to the determination of the soundmyogram characteristics. Moreover, the peculiar changes of the soundmyogram time domain properties, compared to the ones of the EMG, allow one to differentiate the influence of the motor units number and firing rate on the electrical and mechanical performance of the muscle when stimulated.  相似文献   

4.
The fibers of acutely decentralized resting submaxillary muscle of anesthetized frogs were locally shifted by a piezoelectric device (frequency--about 4 Hz) in the direction of fiber shortening during muscular contractions. Arteriole configuration in the affected area changed and they became dilated. The maximum increase of the diameter was 16 to 126%. The latent period, the time during which peak reaction was reached, and the degree of arteriole dilatation during configuration changes were similar to those observed during 4 Hz muscle twitches. It is suggested that a mechanical factor, namely arteriole microdeformations, plays an essential role in the working hyperemia of skeletal muscles.  相似文献   

5.
The activity of 74 units of the cat precentral motor cortex was studied in the process of reaction of placing the forepaw on a support. It has been shown that the neurones controlling the flexion of the ulnar joint, the first phase of the reaction, receive an afferent tactile input primarily from the dorsal side of the paw, i.e. from region of the skin surface which is the receptive field of the reflex of placing the paw on the support. Learning the animals to lift the paw to the support in response to a touch of the ventral surface results in an increase of discharge frequency of the studied units in response to ventral stimulation similar to that recorded in response to the initially effective dorsal stimulation.  相似文献   

6.
A mosaic distribution of local cerebral blood flow was found in the rat border cells of the somatosensory brain cortes, as well as development of local functional hyperemia during whisker stimulation. The more intensive the stimulation the shorter were latency and amplitude of the hyperemia. The early phase of the hyperemia seems to be associated with neuronal factors, whereas the late component depended on the endothelium.  相似文献   

7.
In the abdominal ganglion of Aplysia a number of motoneurons regulating visceral organs reacted to the stimulation of the reproductive organs. The response was mostly biphasic and often delayed. The multifunctional interneuron I (cell L10) reacted to the stimulation of the reproductive organs with burst firing, followed by an inhibitory phase. The interneuron II, involved in the regulation of visceral functions, was also activated during stimulation of the reproductive organs and its burst-pattern could be identified on a number of other neurons. Several members of the neurosecretory cell group reacted to the stimulation of reproductive organs. The response was, as a rule, biphasic and similar to the hormone action, long-lasting. Three further cells (near the cell L12, above the cell L21, and the neuron between R2 and R7 with unknown function) showed a stereotyped response to the stimulation of the reproductive organs. All the neurons reacting to the stimulation of the reproductive organs also received inputs from the cardiorenal system. The data support the existence of common networks composing variable units in the regulation of visceral functions of gastropods.  相似文献   

8.
In the bullfrog, two types of slowly adapting (SA) cutaneous mechanoreceptor afferent units have been identified physiologically: irregularly discharging frog type I (Ft I) units in both warty and nonwarty skin, and regularly discharging frog type II (Ft II) units in the nonwarty skin. In the present study, mechanosensitive spots of Ft I units were located around the skin warts in the warty skin. The quinacrine technique (Crowe and Whitear, 1978) revealed that quinacrine-accumulating Merkel cells were present around the skin warts and near the orifice of skin glands that also surrounded the skin warts. Thus, a significant correlation was found between the location of Merkel cells and the receptive fields (RFs) of Ft I units in the warty skin. Direct current (DC) stimulation was applied for 1 sec to the skin inside and outside the mechanical RFs of the two types of SA units. RFs for DC stimulation were located on those for mechanical stimulation in both types of SA units. The current threshold required to produce a single spike was lower in cathodal than in anodal pulses in both types of SA units. Greater current intensity elicited an increased number of spikes, but the effective polarity of currents was anodal for Ft I units and cathodal for Ft II units. The optimal current intensity for producing prolonged discharges ranged from +60 to +100 microA in Ft I units and - from -50 to -80 microA in Ft II units. The sequence of impulses evoked was irregular in Ft I units and regular in Ft II units, as seen in mechanical responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The isolated contributions of motor unit recruitment and firing rate variations to the median frequency of the electromyogram's power density spectrum were determined. Orderly stimulation of the cat gastrocnemius motor units via nerve electrodes gave rise to linearly increasing median frequency regardless of the action potential firing rate of the active motor units. Increase in the discharge rate of all the motor units resulted in nearly constant median frequency. It was concluded that the increasing average conduction velocity during motor unit recruitment is the major contributor to variations in the electromyogram median frequency. The possibility of using the median frequency as the index to identify the recruitment control strategies employed by various muscles during increasing force contraction is suggested.  相似文献   

10.
To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.  相似文献   

11.
In the bullfrog, two types of slowly adapting (SA) cutaneous mechanoreceptor afferent units have been identified physiologically: irregularly discharging frog type I (Ft I) units in both warty and nonwarty skin, and regularly discharging frog type II (Ft II) units in the nonwarty skin. In the present study, mechanosensitive spots of Ft I units were located around the skin warts in the warty skin. The quinacrine technique (Crowe and Whitear, 1978) revealed that quinacrine-accu-mulating Merkel cells were present around the skin warts and near the orifice of skin glands that also surrounded the skin warts. Thus, a significant correlation was found between the location of Merkel cells and the receptive fields (RFs) of Ft I units in the warty skin.

Direct current (DC) stimulation was applied for 1 sec to the skin inside and outside the mechanical RFs of the two types of SA units. RFs for DC stimulation were located on those for mechanical stimulation in both types of SA units. The current threshold required to produce a single spike was lower in cathodal than in anodal pulses in both types of SA units. Greater current intensity elicited an increased number of spikes, but the effective polarity of currents was anodal for Ft I units and cathodal for Ft II units. The optimal current intensity for producing prolonged discharges ranged from +60 to +100 μA in Ft I units and from -50 to -80 μA in Ft II units. The sequence of impulses evoked was irregular in Ft I units and regular in Ft II units, as seen in mechanical responses. When current of the effective polarity for each type of unit was superimposed on the mechanical indentations, it facilitated the mechanical response. Currents of opposite polarity were not effective without mechanical indentation, but when used together, they depressed the mechanical response in both the Ft I units and the Ft II units. Thus, different polarities of DC could selectively activate two different types of SA units in bullfrogs. We consider these findings in connection with a presumed receptor structure for each type of unit; it is likely that the prolonged discharges in the Ft I unit are produced by active involvement of Merkel cells, whereas those in Ft II units are the result of a direct activation of afferent nerve terminals.  相似文献   

12.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

13.
Single motor unit and fiber action potentials during fatigue   总被引:3,自引:0,他引:3  
Muscle fatigue is defined as a loss of tension development during constant stimulation. Although the relationship is not well documented, muscle fatigue has been inferred from electromyogram (EMG) signals. The purpose of this study was to determine the relationship between the amplitude and duration of single motor unit action potentials (MUAPs) and the loss of tension development (fatigue) in the medial gastrocnemius muscles of cats. Single motor units were fatigued by continuous stimulation at 10 or 80 Hz or with trains of 40-Hz stimuli. When motor units were stimulated at 10 Hz and with trains at 40 Hz (low frequency), tension declined and remained depressed during recovery. The changes in the MUAP correlated poorly with changes in tension. During and after stimulation at 80 Hz (high frequency), changes in the amplitude and duration of MUAPs correlated highly with changes in tension development. Since the EMG signal is dependent on a summation and cancellation of individual MUAPs, the EMG provides a reasonable estimate of high-frequency fatigue but an unreliable measure of low-frequency fatigue.  相似文献   

14.
A linear relationship was found between coronary flow and adenosine release during the course of reactive hyperemia. Isolated guinea pig heart was perfused with a modified Krebs Ringer bicarbonate buffer containing 2.0 mM pyruvate. Hyperemia was induced with 30, 60 and 90-second coronary occlusions. The hyperemic response was divided into three consecutive 13-second intervals (I, II and III), and perfusate efflux from coronary circulation was collected during the last 10 seconds of each interval for adenosine assay using the HPLC. The data show a control flow of 3.13 +/- 0.4 ml/min/g and adenosine release of 66 +/- 4 pmoles/min/g. Flow increased by 99, 38 and 23% at I, II and III, respectively following 30-second occlusion, whereas adenosine release increased by 241, 132 and 91% for I, II and III. A 60-second occlusion increased the flow by 125, 64 and 34% with a simultaneous increase in the release of adenosine by 464, 155 and 133%, respectively, for I, II and III. Marked elevations in flow (165, 92 and 59%) and in adenosine release (659, 194 and 176%) for I, II and III were observed following 90-second occlusion. The linear relationship between coronary flow and adenosine release had r values of 0.84, 0.74 and 0.88 for 30, 60 and 90-second occlusions, respectively. This study quantifies the relationship between coronary flow and adenosine release during the course of reactive hyperemia. It also suggests that on a percent basis, adenosine contributes equally to the hyperemia at I, II and III.  相似文献   

15.
Ability of muscle fibers to generate force is decreased when higher frequency of stimulation of motor units immediately follows lower frequency. This phenomenon called tetanic depression was found in rat medial gastrocnemius. However, it was not clear whether tetanic depression occurred only in rat muscle or it concerns all mammals. This study was conducted on motor units of cat medial gastrocnemius. Analyses were made at three successive trains of stimulation: 30 Hz, 20 and 30 Hz and again 30 Hz (the first pattern) or 40 Hz, 25 and 40 Hz and 40 Hz (the second pattern). In all fast units force generated within the middle tetanus was lower than force generated at the same, but constant frequency of stimulation applied earlier or later. The mean tetanic depression in 30 Hz tetani amounted to 10.9% for fast fatigable (FF) and 15.9% for fast resistant (FR) motor units, whereas in 40 Hz tetani mean values were 5.6% and 7.3% for FF and FR motor units, respectively. In slow motor units tetanic depression was not observed. These results proved the existence of tetanic depression in the feline muscle and indicated that its intensity depends on the fusion of tetanus. It has been concluded, that the tetanic depression is a general property of fast motor units in mammals.  相似文献   

16.
We sought to understand the nature of control mechanisms involved in the adaptation of exercising muscle hyperemia. Seven subjects performed rhythmic dynamic forearm exercise under two exercise conditions: small step 1 [step increase from rest to 40% peak forearm vascular conductance (FVC), in ml.min(-1).100 mmHg-1] for 5 min followed by small step 2 (further increase to 80% peak FVC for 5 min), and large step (step increase from rest to 80% peak FVC for 5 min). FVC data were fit with a two- (small step 1) and three-component (small step 2, large step) exponential as appropriate. For the rapid phase I response, FVC dynamic response characteristics (time delay, time constant) were not affected by the magnitude of the work intensity increase when the transition began from rest, but were slower in the 40-80% transition. Rest-80% gain was greater than either rest-40% or 40-80% transitions but represented the same proportion of the phase I + phase II gain across all transitions (57 vs. 56 vs. 57%, respectively, P = 0.975). For the slower phase II response, dynamic response characteristics were not affected by the magnitude of the work intensity increase when initiated from rest. The time constant was not altered when the transition began from exercise vs. rest. We conclude that 1) dynamic response characteristics of exercise hyperemia control mechanisms are not affected by the magnitude of work rate increase when forearm exercise is initiated from rest, 2) phase I but not phase II dynamic response characteristics are sensitive to baseline exercise intensity, and 3) the mechanisms contributing to phase I result in the same relative response magnitude, regardless of the size of the step increase in exercise intensity or the baseline from which it is initiated.  相似文献   

17.
Reversible perfusion defects on (99m)Tc-sestamibi imaging during hyperemia are thought to occur due to myocardial blood flow (MBF) "mismatch" between regions with and without stenosis. We have recently shown that myocardial blood volume (MBV) distal to a stenosis decreases during hyperemia, resulting in a reversible perfusion defect on myocardial contrast echocardiography (MCE). In this study, we hypothesized that a reversible perfusion defect on (99m)Tc-sestamibi imaging during hyperemia results from the same mechanism. We tested our hypothesis under the following conditions: 1) increases in MBF in the absence of changes in MBV by using direct intracoronary infusion of adenosine (group I, n = 10 dogs); 2) decrease in MBV despite an increase in MBF by left main infusion of adenosine proximal to a noncritical coronary stenosis placed on either coronary artery (group II, n = 13 dogs); and 3) reduction in both resting MBF and MBV by placement of a severe stenosis (group III, n = 7 dogs). In group I dogs, no difference in MBV or (99m)Tc-sestamibi uptake was found between the two coronary beds despite an up to fourfold increase in MBF in one bed with adenosine. In group II dogs, MBV distal to the stenosis decreased during hyperemia despite a twofold increase in mean MBF. A good correlation was found between (99m)Tc-sestamibi uptake and MBV ratios from the stenosed versus normal bed (r = 0.91, P < 0.001). In group III dogs, both MBF and MBV were decreased in the stenosed bed at rest with a good correlation noted between (99m)Tc-sestamibi uptake and MBV ratios from the stenosed versus normal bed (r = 0.92, P = 0.004). We conclude that reversible defects on (99m)Tc-sestamibi during vasodilator stress imaging are related to decreases in MBV distal to a stenosis and not to "flow mismatch" between beds. The decrease in MBV results in reduced (99m)Tc-sestamibi uptake during hyperemia.  相似文献   

18.
Phase shifts of cortical potentials were studied in rabbits before and during photic stimulation and their importance for irradiation of excitation from the visual to the motor area was examined. Both before and during stimulation variations in phase relationships of various kinds were observed. In most cases, however, with an increase in distance between the electrodes, the phase shift of the theta-waves gradually increased. Most motor responses of the rabbits took place in the presence of a marked phase shift gradient. It is suggested that the state of the brain in which a spatial phase shift gradient of the theta-waves is recorded in the EEG is the optimal condition for realization of the motor response. Photic stimulation increases the number of in-phase waves in the EEG recorded from closely situated points and it reduces scatter of the phase shift values between components of the sensomotor and visual cortical EEG, i.e., it leads to an increase in coherence. Motor responses of the rabbits to stimulation take place in the presence of theta-waves with the most constant phase shift in the EEG of the sensomotor and visual cortex.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 16, No. 4, pp. 512–519, July–August, 1984.  相似文献   

19.
The activity of single units in the focus of conditioned excitation was studied during defensive conditioning to direct electrical stimulation of the cat sensorimotor cortex. Reorganizations of spike activity set in during the period of reflex elaboration, were manifest in the increased number of excited neurones and those which respond both to the conditioned and unconditioned stimuli. In the course of elaboration, the inhibitory phase of unit responses to direct electrical stimulation of the sensorimotor cortex was reduced, while the frequency of background unit spike activity was enhanced. Acute extinction of the reflex restored the initial duration of the inhibitory phase and reduced the frequency of the background activity.  相似文献   

20.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号