首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mitochondrial protein import motor   总被引:2,自引:0,他引:2  
Strub A  Lim JH  Pfanner N  Voos W 《Biological chemistry》2000,381(9-10):943-949
Mitochondrial proteins are synthesized as precursor proteins in the cytosol and are posttranslationally imported into the organelle. A complex system of translocation machineries recognizes and transports the precursor polypeptide across the mitochondrial membranes. Energy for the translocation process is mainly supplied by the mitochondrial membrane potential (deltapsi) and the hydrolysis of ATP. Mitochondrial Hsp70 (mtHsp70) has been identified as the major ATPase driving the membrane transport of the precursor polypeptides into the mitochondrial matrix. Together with the partner proteins Tim44 and Mge1, mtHsp70 forms an import motor complex interacting with the incoming preproteins at the inner face of the inner membrane. This import motor complex drives the movement of the polypeptides in the translocation channel and the unfolding of carboxy-terminal parts of the preproteins on the outside of the outer membrane. Two models of the molecular mechanism of mtHsp70 during polypeptide translocation are discussed. In the 'trapping' model, precursor movement is generated by Brownian movement of the polypeptide chain in the translocation pore. This random movement is made vectorial by the interaction with mtHsp70 in the matrix. The detailed characterization of conditional mutants of the import motor complex provides the basis for an extended model. In this 'pulling' model, the attachment of mtHsp70 at the inner membrane via Tim44 and a conformational change induced by ATP results in the generation of an inward-directed force on the bound precursor polypeptide. This active role of the import motor complex is necessary for the translocation of proteins containing tightly folded domains. We suggest that both mechanisms complement each other to reach a high efficiency of preprotein import.  相似文献   

2.
Import of mitochondrial matrix proteins involves the general translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated motor (PAM) drives the completion of preprotein translocation into the matrix. Five subunits of PAM are known: the preprotein-binding matrix heat shock protein 70 (mtHsp70), the nucleotide exchange factor Mge1, Tim44 that directs mtHsp70 to the inner membrane, and the membrane-bound complex of Pam16-Pam18 that regulates the ATPase activity of mtHsp70. We have identified a sixth motor subunit. Pam17 (encoded by the open reading frame YKR065c) is anchored in the inner membrane and exposed to the matrix. Mitochondria lacking Pam17 are selectively impaired in the import of matrix proteins and the generation of an import-driving activity of PAM. Pam17 is required for formation of a stable complex between the cochaperones Pam16 and Pam18 and promotes the association of Pam16-Pam18 with the presequence translocase. Our findings suggest that Pam17 is required for the correct organization of the Pam16-Pam18 complex and thus contributes to regulation of mtHsp70 activity at the inner membrane translocation site.  相似文献   

3.
Mitochondrial preproteins destined for the matrix are translocated by two channel-forming transport machineries, the translocase of the outer membrane and the presequence translocase of the inner membrane. The presequence translocase-associated protein import motor (PAM) contains four essential subunits: the matrix heat shock protein 70 (mtHsp70) and its three cochaperones Mge1, Tim44 and Pam18. Here we report that the PAM contains a fifth essential subunit, Pam16 (encoded by Saccharomyces cerevisiae YJL104W), which is selectively required for preprotein translocation into the matrix, but not for protein insertion into the inner membrane. Pam16 interacts with Pam18 and is needed for the association of Pam18 with the presequence translocase and for formation of a mtHsp70-Tim44 complex. Thus, Pam16 is a newly identified type of motor subunit and is required to promote a functional PAM reaction cycle, thereby driving preprotein import into the matrix.  相似文献   

4.
Mitochondria import the vast majority of their proteins from the cytosol. The mitochondrial import motor of the TIM23 translocase drives the translocation of precursor proteins across the outer and inner membrane in an ATP-dependent reaction. Tim44 at the inner face of the translocation pore recruits the chaperone mtHsp70, which binds the incoming precursor protein. This reaction is assisted by the cochaperones Tim14 and Mge1. We have identified a novel essential cochaperone, Tim16. It is related to J-domain proteins and forms a stable subcomplex with the J protein Tim14. Depletion of Tim16 has a marked effect on protein import into the mitochondrial matrix, impairs the interaction of Tim14 with the TIM23 complex and leads to severe structural changes of the import motor. In conclusion, Tim16 is a constituent of the TIM23 preprotein translocase, where it exerts crucial functions in the import motor.  相似文献   

5.
Preproteins synthesized on cytosolic ribosomes, but destined for the mitochondrial matrix, pass through the presequence translocase of the inner membrane. Translocation is driven by the import motor, having at its core the essential chaperone mtHsp70 (Ssc1 in yeast). MtHsp70 is tethered to the translocon channel at the matrix side of the inner membrane by the peripheral membrane protein Tim44. A key question in mitochondrial import is how the mtHsp70-Tim44 interaction is regulated. Here we report that Tim44 interacts with both the ATPase and peptide-binding domains of mtHsp70. Disruption of these interactions upon binding of polypeptide substrates requires concerted conformational changes involving both domains of mtHsp70. Our results fit a model in which regulated interactions between Tim44 and mtHsp70, controlled by polypeptide binding, are required for efficient translocation across the mitochondrial inner membrane in vivo.  相似文献   

6.
Protein translocation across the mitochondrial inner membrane is driven by cycles of binding and release of mitochondrial heat shock protein 70 (mtHsp70) in the matrix. The peripheral inner membrane protein, Tim44, recruits mtHsp70 in an ATP-dependent manner to the import sites. We show that DnaK, the closely related Hsp70 of Escherichia coli, when targeted to the matrix of yeast mitochondria, interacts in a specific manner with Tim44. The interaction is, however, not regulated by ATP, and DnaK cannot support protein translocation. We used truncated mtHsp70s and chimeric proteins consisting of segments of mtHsp70 and DnaK to analyze which portions of mtHsp70 bind and functionally interact with Tim44. We show that Tim44 interacts with the beta-stranded core of the peptide binding domain of mtHsp70 and of DnaK. The alpha-helices A and B of the peptide binding domain of mtHsp70 are required to transmit the nucleotide state of the ATPase domain to the peptide binding domain. Tim44, by interacting in this way with the peptide binding domain, is proposed to coordinate the binding of mtHsp70 to the incoming preprotein and the subsequent release of the mtHsp70-preprotein complex from the TIM23 complex, the translocase of the inner membrane.  相似文献   

7.
Transport of preproteins into the mitochondrial matrix requires the presequence translocase of the inner membrane (TIM23 complex) and the presequence translocase-associated motor (PAM). The motor consists of five essential subunits, the mitochondrial heat shock protein 70 (mtHsp70) and four cochaperones, the nucleotide exchange-factor Mge1, the translocase-associated fulcrum Tim44, the J-protein Pam18, and Pam16. Pam16 forms a complex with Pam18 and displays similarity to J-proteins but lacks the canonical tripeptide motif His-Pro-Asp (HPD). We report that Pam16 does not function as a typical J-domain protein but, rather, antagonizes the function of Pam18. Pam16 specifically inhibits the Pam18-mediated stimulation of the ATPase activity of mtHsp70. The inclusion of the HPD motif in Pam16 does not confer the ability to stimulate mtHsp70 activity. Pam16-HPD fully substitutes for wild-type Pam16 in vitro and in vivo but is not able to replace Pam18. Pam16 represents a new type of cochaperone that controls the stimulatory effect of the J-protein Pam18 and regulates the interaction of mtHsp70 with precursor proteins during import into mitochondria.  相似文献   

8.
Oxa1 is the mitochondrial representative of a family of related proteins that mediate the insertion of substrate proteins into the membranes of bacteria, chloroplasts, and mitochondria. Several studies have demonstrated that the bacterial homologue YidC participates both in the direct uptake of proteins from the bacterial cytosol, and in the uptake of nascent proteins from the Sec translocase. Studies on the biogenesis of membrane proteins in mitochondria established that Oxa1 has the capability to receive substrates at the inner surface of the inner membrane. In this study, we asked if Oxa1 may similarly cooperate with a protein translocase within the membrane. Since Oxa1 is involved in its own biogenesis, we used the precursor of Oxa1 as a model protein and investigated its import pathway. We found that immediately after import into mitochondria, Oxa1 initially accumulates at Tim23 that forms the inner membrane protein translocase. Cleavage of the Oxa1 presequence is dependent on mtHsp70, a heat shock protein of the mitochondrial matrix. However, mutant mtHsp70 showing a defect in the release of bound substrate proteins does not interfere with subsequent membrane insertion, indicating that membrane insertion of the mature protein is essentially mtHsp70-independent. We conclude that Oxa1 has the ability to accept preproteins within the membrane.  相似文献   

9.
The mitochondrial inner membrane is the central energy-converting membrane of eukaryotic cells. The electrochemical proton gradient generated by the respiratory chain drives the ATP synthase. To maintain this proton-motive force, the inner membrane forms a tight barrier and strictly controls the translocation of ions. However, the major preprotein transport machinery of the inner membrane, termed the presequence translocase, translocates polypeptide chains into or across the membrane. Different views exist of the molecular mechanism of the translocase, in particular of the coupling with the import motor of the matrix. We have reconstituted preprotein transport into the mitochondrial inner membrane by incorporating the purified presequence translocase into cardiolipin-containing liposomes. We show that the motor-free form of the presequence translocase integrates preproteins into the membrane. The reconstituted presequence translocase responds to targeting peptides and mediates voltage-driven preprotein translocation, lateral release and insertion into the lipid phase. Thus, the minimal system for preprotein integration into the mitochondrial inner membrane is the presequence translocase, a cardiolipin-rich membrane and a membrane potential.  相似文献   

10.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

11.
The protein transport machinery of the inner mitochondrial membrane contains three essential Tim proteins. Tim17 and Tim23 are thought to build a preprotein translocation channel, while Tim44 transiently interacts with the matrix heat shock protein Hsp70 to form an ATP-driven import motor. For this report we characterized the biogenesis and interactions of Tim proteins. (i) Import of the precursor of Tim44 into the inner membrane requires mtHsp70, whereas import and inner membrane integration of the precursors of Tim17 and Tim23 are independent of functional mtHsp70. (ii) Tim17 efficiently associates with Tim23 and mtHsp70, but only weakly with Tim44. (iii) Depletion of Tim44 does not affect the co-precipitation of Tim17 with antibodies directed against mtHsp70. (iv) Tim23 associates with both Tim44 and Tim17, suggesting the presence of two Tim23 pools in the inner membrane, a Tim44-Tim23-containing sub-complex and a Tim23-Tim17-containing sub-complex. (v) The association of mtHsp70 with the Tim23-Tim17 sub-complex is ATP sensitive and can be distinguished from the mtHsp70-Tim44 interaction by the differential influence of an amino acid substitution in mtHsp70. (vi) Genetic evidence, suppression of the protein import defect of a tim17 yeast mutant by overexpression of mtHsp70 and synthetic lethality of conditional mutants in the genes of Tim17 and mtHsp70, supports a functional interaction of mtHsp70 with Tim17. We conclude that the protein transport machinery of the mitochondrial inner membrane consists of dynamically interacting sub-complexes, each of which transiently binds mtHsp70.  相似文献   

12.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins.  相似文献   

13.
Import of proteins into the matrix is driven by the Tim23 presequence translocase-associated import motor PAM. The core component of PAM is the mitochondrial chaperone mtHsp70, which ensures efficient translocation of proteins across the inner membrane through interactions with the J-protein complex Pam16–Pam18 (Tim16–Tim14) and its cochaperone Tim44. The recently identified non-essential Pam17 is a further member of PAM. Genetic and biochemical analyses reveal synthetic interactions between PAM17 and TIM44. Pam17 is involved in an early stage of protein translocation whereas Tim44 assists in a later step of transport, suggesting that both proteins can cooperate in a complementary manner in protein import.  相似文献   

14.
The import motor of the mitochondrial translocase of the inner membrane (TIM23) mediates the ATP-dependent translocation of preproteins into the mitochondrial matrix by cycles of binding to and release from mtHsp70. An essential step of this process is the stimulation of the ATPase activity of mtHsp70 performed by the J cochaperone Tim14. Tim14 forms a complex with the J-like protein Tim16. The crystal structure of this complex shows that the conserved domains of the two proteins have virtually identical folds but completely different surfaces enabling them to perform different functions. The Tim14-Tim16 dimer reveals a previously undescribed arrangement of J and J-like domains. Mutations that destroy the complex between Tim14 and Tim16 are lethal demonstrating that complex formation is an essential requirement for the viability of cells. We further demonstrate tight regulation of the cochaperone activity of Tim14 by Tim16. The first crystal structure of a J domain in complex with a regulatory protein provides new insights into the function of the mitochondrial TIM23 translocase and the Hsp70 chaperone system in general.  相似文献   

15.
The presequence translocase of the mitochondrial inner membrane (TIM23 complex) mediates the import of preproteins with amino-terminal presequences. To drive matrix translocation the TIM23 complex recruits the presequence translocase-associated motor (PAM) with the matrix heat shock protein 70 (mtHsp70) as central subunit. Activity and localization of mtHsp70 are regulated by four membrane-associated cochaperones: the adaptor protein Tim44, the stimulatory J-complex Pam18/Pam16, and Pam17. It has been proposed that Tim44 serves as molecular platform to localize mtHsp70 and the J-complex at the TIM23 complex, but it is unknown how Pam17 interacts with the translocase. We generated conditional tim44 yeast mutants and selected a mutant allele, which differentially affects the association of PAM modules with TIM23. In tim44-804 mitochondria, the interaction of the J-complex with the TIM23 complex is impaired, whereas unexpectedly the binding of Pam17 is increased. Pam17 interacts with the channel protein Tim23, revealing a new interaction site between TIM23 and PAM. Thus, the motor PAM is composed of functional modules that bind to different sites of the translocase. We suggest that Tim44 is not simply a scaffold for binding of motor subunits but plays a differential role in the recruitment of PAM modules to the inner membrane translocase.  相似文献   

16.
The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.  相似文献   

17.
We have previously reconstituted the soluble phase of precursor protein translocation in vitro using purified proteins (the precursor proOmpA, the chaperone SecB, and the ATPase SecA) in addition to isolated inner membrane vesicles. We now report the isolation of the SecY/E protein, the integral membrane protein component of the E. coli preprotein translocase. The SecY/E protein, reconstituted into proteoliposomes, acts together with SecA protein to support translocation of proOmpA, the precursor form of outer membrane protein A. This translocation requires ATP and is strongly stimulated by the protonmotive force. The initial rates and the extents of translocation into either native membrane vesicles or proteoliposomes with pure SecY/E are comparable. The SecY/E protein consists of SecY, SecE, and an additional polypeptide. Antiserum against SecY immunoprecipitates all three components of the SecY/E protein.  相似文献   

18.
The import motor for preproteins that are targeted into the mitochondrial matrix consists of the matrix heat shock protein Hsp70 (mtHsp70) and the translocase subunit Tim44 of the inner membrane. mtHsp70 interacts with Tim44 in an ATP-dependent reaction cycle, binds to preproteins in transit, and drives their translocation into the matrix. While different functional mechanisms are discussed for the mtHsp70-Tim44 machinery, little is known about the actual mode of interaction of both proteins. Here, we have addressed which of the three Hsp70 regions, the ATPase domain, the peptide binding domain, or the carboxy-terminal segment, are required for the interaction with Tim44. By two independent means, a two-hybrid system and coprecipitation of mtHsp70 constructs imported into mitochondria, we show that the ATPase domain interacts with Tim44, although with a reduced efficiency compared to the full-length mtHsp70. The interaction of the ATPase domain with Tim44 is ATP sensitive. The peptide binding domain and carboxy-terminal segment are unable to bind to Tim44 in the absence of the ATPase domain, but both regions enhance the interaction with Tim44 in the presence of the ATPase domain. We conclude that the ATPase domain of mtHsp70 is essential for and directly interacts with Tim44, clearly separating the mtHsp70-Tim44 interaction from the mtHsp70-substrate interaction.  相似文献   

19.
Import of proteins across the inner mitochondrial membrane through the Tim23:Tim17 translocase requires the function of an essential import motor having mitochondrial 70-kDa heat-shock protein (mtHsp70) at its core. The heterodimer composed of Pam18, the J-protein partner of mtHsp70, and the related protein Pam16 is a critical component of this motor. We report that three interactions contribute to association of the heterodimer with the translocon: the N terminus of Pam16 with the matrix side of the translocon, the inner membrane space domain of Pam18 (Pam18(IMS)) with Tim17, and the direct interaction of the J-domain of Pam18 with the J-like domain of Pam16. Pam16 plays a major role in translocon association, as alterations affecting the stability of the Pam18:Pam16 heterodimer dramatically affect association of Pam18, but not Pam16, with the translocon. Suppressors of the growth defects caused by alterations in the N terminus of Pam16 were isolated and found to be due to mutations in a short segment of TIM44, the gene encoding the peripheral membrane protein that tethers mtHsp70 to the translocon. These data suggest a model in which Tim44 serves as a scaffold for precise positioning of mtHsp70 and its cochaperone Pam18 at the translocon.  相似文献   

20.
Newly synthesized mitochondrial precursor proteins have to become unfolded by the mitochondrial Hsp70 (mtHsp70) import motor to cross the mitochondrial membranes. To assess the mechanism of unfolding of precursor proteins by mtHsp70, we designed a system to measure step sizes of the mtHsp70 import motor, which are distances at which the motor system moves along polypeptide chains during a single turnover of ATP. We made a series of fusion proteins consisting of a mitochondrial presequence containing the first mtHsp70 binding site, a spacer sequence containing an Hsp70 avoidance segment followed by the second mtHsp70 binding site, and different folded mature domains. Analyses of the dependence of the import rates of those fusion proteins on the lengths of Hsp70 avoidance segments allowed us to estimate the step sizes, which differ for different mature domains and different lengths of the spacers. These results suggest that the mtHsp70 import motor functions at least as a molecular Brownian ratchet to unfold mitochondrial precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号