首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The specificity of the outer membrane protein receptor for ferric enterobactin transport in Escherichia coli and the mechanism of enterobactin-mediated transport of ferric ions across the outer membrane have been studied. Transport kinetic and inhibition studies with ferric enterobactin and synthetic structural analogs have mapped the parts of the molecule important for receptor binding. The ferric complex of the synthetic structural analog of enterobactin, 1,3,5-N,N',N'-tris-(2,3-dihydroxybenzoyl)triaminomethylbenzene (MECAM), was transported with the same maximum velocity as was ferric enterobactin. A double-label transport assay with [59Fe, 3H]MECAM showed that the ligand and the metal are transported across the outer membrane at an identical rate. Under the growth conditions used, large fractions of the transported complexes were available for exchange across the outer membrane when a large excess of extracellular complex was added to the cell suspension; at least 60% of the internalized [59Fe]enterobactin exchanged with extracellular [55Fe]enterobactin. Internalized [59Fe, 3H]MECAM was released from the cell as the intact complex when either unlabeled Fe-MECAM or Fe-enterobactin was added extracellularly. The results suggest a mechanism of active transport of unmodified coordination complex across the outer membrane with possible accumulation in the periplasm.  相似文献   

2.
Monoclonal antibodies (MAb) were raised to the Escherichia coli K-12 ferric enterobactin receptor, FepA, and used to identify regions of the polypeptide that are involved in interaction with its ligands ferric enterobactin and colicins B and D. A total of 11 distinct FepA epitopes were identified. The locations of these epitopes within the primary sequence of FepA were mapped by screening MAb against a library of FepA::PhoA fusion proteins, a FepA deletion mutant, and proteolytically modified FepA. These experiments localized the 11 epitopes to seven different regions within the FepA polypeptide, including residues 2 to 24, 27 to 37, 100 to 178, 204 to 227, 258 to 290, 290 to 339, and 382 to 400 of the mature protein. Cell surface-exposed epitopes of FepA were identified and discriminated by cytofluorimetry and by the ability of MAb that recognize them to block the interaction of FepA with its ligands. Seven surface epitopes were defined, including one each in regions 27 to 37, 204 to 227, and 258 to 290 and two each in regions 290 to 339 and 382 to 400. One of these, within region 290 to 339, was recognized by MAb in bacteria containing intact (rfa+) lipopolysaccharide (LPS); all other surface epitopes were susceptible to MAb binding only in a strain containing a truncated (rfaD) LPS core, suggesting that they are physically shielded by E. coli K-12 LPS core sugars. Antibody binding to FepA surface epitopes within region 290 to 339 or 382 to 400 inhibited killing by colicin B or D and the uptake of ferric enterobactin. In addition to the FepA-specific MAb, antibodies that recognized other outer membrane components, including Cir, OmpA, TonA, and LPS, were identified. Immunochemical and biochemical characterization of the surface structures of FepA and analysis of its hydrophobicity and amphilicity were used to generate a model of the ferric enterobactin receptor's transmembrane strands, surface peptides, and ligand-binding domains.  相似文献   

3.
In Escherichia coli, the outer membrane protein FepA is a receptor for the siderophore complex ferric enterobactin and for colicins B and D. To identify protein domains important for FepA activity, the effects of deletion and linker insertion mutations on receptor structure and function were examined. In-frame internal deletion mutations removing sequences encoding up to 304 amino acid residues resulted in functionally defective FepA polypeptides, although most were translocated efficiently to the outer membrane. One exception, a derivative lacking 87 internal amino acid residues near the N terminus, showed an inability to transport ferric enterobactin but retained limited colicin receptor function. Analysis of cells carrying 3'-terminal fepA deletion mutations suggested that residues within the C terminus of FepA may be involved in secretion and proper translocation of the protein to the outer membrane. Introduction of the peptide Leu-Glu after FepA residues 55, 142, or 324 severely impaired receptor function for all three ligands, while the same insertion after residues 339 or 359 had virtually no detrimental effect on FepA function. Foreign peptides inserted after residues 204 or 635 restricted colicin B and D function only, leaving ferric enterobactin transport ability at near wild-type levels. The results presented in this study have identified key regions of FepA potentially involved in receptor function and demonstrate the presence of both shared and unique ligand-responsive domains.  相似文献   

4.
5.
Synthetic enterobactin and enantioenterobactin (D-seryl enterobactin) have been examined for the ability to transport iron in Escherichia coli. Failure of the unnatural, D-serine-derived material to support growth of E. coli mutants indicates outer membrane receptor specificity for the naturally occurring complex having an L-seryl backbone and the delta-cis configuration of the Fe(III).catecholate center. Enantioenterobactin was markedly less effective in protecting cells against colicin B compared to synthetic or natural enterobactin.  相似文献   

6.
The periplasmic protein FepB of Escherichia coli is a component of the ferric enterobactin transport system. We overexpressed and purified the binding protein 23-fold from periplasmic extracts by ammonium sulfate precipitation and chromatographic methods, with a yield of 20%, to a final specific activity of 15,500 pmol of ferric enterobactin bound/mg. Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM. Intrinsic fluorescence measurements of binding by the purified protein, which were more accurate, showed higher affinity for both ferric enterobactin (K(d) = 30 nM) and ferric enantioenterobactin (K(d) = 15 nM), the left-handed stereoisomer of the natural E. coli siderophore. Purified FepB also adsorbed the apo-siderophore, enterobactin, with comparable affinity (K(d) = 60 nM) but did not bind ferric agrobactin. Polyclonal rabbit antisera and mouse monoclonal antibodies raised against nearly homogeneous preparations of FepB specifically recognized it in solid-phase immunoassays. These sera enabled the measurement of the FepB concentration in vivo when expressed from the chromosome (4,000 copies/cell) or from multicopy plasmids (>100,000 copies/cell). Overexpression of the binding protein did not enhance the overall affinity or rate of ferric enterobactin transport, supporting the conclusion that the rate-limiting step of ferric siderophore uptake through the cell envelope is passage through the outer membrane.  相似文献   

7.
We characterized the uptake of ferric enterobactin (FeEnt), the native Escherichia coli ferric siderophore, through its cognate outer membrane receptor protein, FepA, using a site-directed fluorescence methodology. The experiments first defined locations in FepA that were accessible to covalent modification with fluorescein maleimide (FM) in vivo; among 10 sites that we tested by substituting single Cys residues, FM labeled W101C, S271C, F329C, and S397C, and all these exist within surface-exposed loops of the outer membrane protein. FeEnt normally adsorbed to the fluoresceinated S271C and S397C mutant FepA proteins in vivo, which we observed as quenching of fluorescence intensity, but the ferric siderophore did not bind to the FM-modified derivatives of W101C or F329C. These in vivo fluorescence determinations showed, for the first time, consistency with radioisotopic measurements of the affinity of the FeEnt-FepA interaction; K(d) was 0.2 nm by both methods. Analysis of the FepA mutants with AlexaFluor(680), a fluorescein derivative with red-shifted absorption and emission spectra that do not overlap the absorbance spectrum of FeEnt, refuted the possibility that the fluorescence quenching resulted from resonance energy transfer. These and other data instead indicated that the quenching originated from changes in the environment of the fluor as a result of loop conformational changes during ligand binding and transport. We used the fluorescence system to monitor FeEnt uptake by live bacteria and determined its dependence on ligand concentration, temperature, pH, and carbon sources and its susceptibility to inhibition by the metabolic poisons. Unlike cyanocobalamin transport through the outer membrane, FeEnt uptake was sensitive to inhibitors of electron transport and phosphorylation, in addition to its sensitivity to proton motive force depletion.  相似文献   

8.
Ferric enterobactin is a catecholate siderophore that binds with high affinity (Kd approximately 10-10 M) to the Escherichia coli outer membrane protein FepA. We studied the involvement of aromatic amino acids in its uptake by determining the binding affinities, kinetics and transport properties of site-directed mutants. We replaced seven aromatic residues (Y260, Y272, Y285, Y289, W297, Y309 and F329) in the central part of FepA primary structure with alanine, individually and in double combinations, and determined the ability of the mutant proteins to interact with ferric enterobactin and the protein toxins colicins B and D. All the constructs showed normal expression and localization. Among single mutants, Y260A and F329A were most detrimental, reducing the affinity between FepA and ferric enterobactin 100- and 10-fold respectively. Double substitutions involving Y260, Y272 and F329 impaired (100- to 2500-fold) adsorption of the iron chelate more strongly. For Y260A and Y272A, the drop in adsorption affinity caused commensurate decreases in transport efficiency, suggesting that the target residues primarily act in ligand binding. F329A, like R316A, showed greater impairment of transport than binding, intimating mechanistic involvement during ligand internalization. Furthermore, immunochemical studies localized F329 in the FepA ligand binding site. The mutagenesis results suggested the existence of dual ligand binding sites in the FepA vestibule, and measurements of the rate of ferric enterobactin adsorption to fluoresceinated FepA mutant proteins confirmed this conclusion. The initial, outermost site contains aromatic residues and probably functions through hydrophobic interactions, whereas the secondary site exists deeper in the vestibule, contains both charged and aromatic residues and probably acts through hydrophobic and electrostatic bonds.  相似文献   

9.
Modification of a ferric enterobactin receptor protein of Escherichia coli was observed upon incubation of either whole membranes or Triton X-100 solubilized outer membrane at 37°C. The modification was characterized by a change in mobility of the receptor band on SDS polyacrylamide gel electrophoresis and by a decreased binding capacity for ferric enterobactin. The rate of modification was affected by temperature and trypsin inhibitor, benzamidine. Ferric enterobactin inhibited the reaction in whole membrane. The modification affected the limited chymotrypsin digestion pattern of the receptor. The activity may represent a specific modification of the receptor, one possibly mediated by a membran-associated enzyme.  相似文献   

10.
The Escherichia coli ferric enterobactin esterase gene (fes) was cloned into the vector pGEM3Z under the control of the T7 gene 10 promoter and overexpressed to approximately 15% of the total cellular protein. The ferric enterobactin esterase (Fes) enzyme was purified as a 43-kDa monomer by gel filtration chromatography. Purified Fes preparations were examined for esterase activity on enterobactin and its metal complexes and for iron reduction from ferric complexes of enterobactin and 1,3,5-tris(N,N',N"-2,3-dihydroxybenzoyl)aminomethylbenzene (MECAM), a structural analog lacking ester linkages. Fes effectively catalyzed the hydrolysis of both enterobactin and its ferric complex, exhibiting a 4-fold greater activity on the free ligand. It also cleaved the aluminum (III) complex at a rate similar to the ferric complex, suggesting that ester hydrolysis of the ligand backbone is independent of any reductive process associated with the bound metal. Ferrous iron was released from the enterobactin complex at a rate similar to ligand cleavage indicating that hydrolysis and iron reduction are tightly associated. However, no detectable release of ferrous iron from the MECAM complex implies that, with these in vitro preparations, metal reduction depends upon, and is subsequent to, the esterase activity of Fes. These observations are discussed in relation to studies which show that such enterobactin analogs can supply growth-promoting iron concentrations to E. coli.  相似文献   

11.
Escherichia coli mutants defective in the assimilation of iron from ferrienterochelin were isolated and characterized. One mutant was able to bind ferrienterochelin to its outer membrane but could not transport it into the cell. Complementation tests with lambda hybrid phage were employed to distinguish the defective gene, which we term fepB, from fepA, the structural gene for the outer membrane ferrienterochelin receptor protein. These same physiological and genetic tests were employed to tentatively classify several previously described fep mutants as carrying either fepA or fepB. The data demonstrate the existence of fepB and provide an explanation for previous difficulties in identifying fepB mutants.  相似文献   

12.
The ferric enterobactin receptor protein (81 kDal) of Escherichia coli O111 was purified by preparative sodium dodecyl sulphate-polyacrylamide gel electrophoresis and used to raise polyclonal antiserum in rabbits. This antiserum was used in conjunction with the immunoblot technique to examine the degree of antigenic homology of the ferric enterobactin receptor protein among 17 pathogenic and laboratory strains of E. coli. Both the molecular weight and the antigenic properties of the enterobactin receptor were highly conserved. However, the laboratory strain C and a pathogenic enteroinvasive strain, E. coli O164, were unusual in not producing the 81 kDal protein. The antiserum also recognized an 81 kDal protein from iron-restricted Salmonella typhimurium and an 83 kDal protein from iron-restricted Klebsiella pneumoniae.  相似文献   

13.
Evidence of ball-and-chain transport of ferric enterobactin through FepA   总被引:1,自引:0,他引:1  
The Escherichia coli iron transporter, FepA, has a globular N terminus that resides within a transmembrane beta-barrel formed by its C terminus. We engineered 25 cysteine substitution mutations at different locations in FepA and modified their sulfhydryl side chains with fluorescein maleimide in live cells. The reactivity of the Cys residues changed, sometimes dramatically, during the transport of ferric enterobactin, the natural ligand of FepA. Patterns of Cys susceptibility reflected energy- and TonB-dependent motion in the receptor protein. During transport, a residue on the normally buried surface of the N-domain was labeled by fluorescein maleimide in the periplasm, providing evidence that the transport process involves expulsion of the globular domain from the beta-barrel. Porin deficiency much reduced the fluoresceination of this site, confirming the periplasmic labeling route. These data support the previously proposed, but never demonstrated, ball-and-chain theory of membrane transport. Functional complementation between a separately expressed N terminus and C-terminal beta-barrel domain confirmed the feasibility of this mechanism.  相似文献   

14.
EntG activity of Escherichia coli enterobactin synthetase.   总被引:3,自引:2,他引:3       下载免费PDF全文
The last steps in the biosynthesis of the Escherichia coli siderophore enterobactin (Ent) are carried out by Ent synthetase, a multienzyme complex believed to be composed of the entD, -E, -F, and -G products (EntD to -G). However, sequencing data showed that there is no separate entG gene and, unlike EntD to -F, no distinct EntG polypeptide has been identified. In this study, genetic, biochemical, and immunological approaches were used to study the anomalies associated with EntG activity. Two plasmids, pJS43 and pJS100, were isolated that had mutations resulting in truncated EntB proteins; both had the phenotype EntB+ EntG-. PJS43 had a Tn5 inserted 198 bp from the entB termination codon, and pJS100 had the last 25 codons of entB deleted. Plasmids isolated with Tn5 insertions in the 5' half of entB had the phenotype EntB- EntG+. These latter Tn5 mutations were EntB- EntG- when moved to the bacterial chromosome. Polyclonal antiserum was prepared and shown to react only with intact EntB in Western immunoblots. Addition of anti-EntB antiserum to Ent synthetase assays resulted in complete inhibition of enzyme activity, whereas preimmune serum had no effect. Lastly, AN462, the type strain for entG which was derived by Mu insertion and which has the phenotype EntB-G-A-, was characterized. Southern blot data showed a Mu insertion, presumably with polar effects, in the vicinity of the 5' end of entB. In summary, EntG activity was found to be encoded by the entB 3' terminus. The evidence, while not rigorously eliminating the possibility that a separate EntG polypeptide exists, strongly supports the idea that EntB is a bifunctional protein.  相似文献   

15.
The modification activity for the ferric enterobactin receptor in the Triton X-100 solubilized outer membrane of Escherichiacoli K-12 was adsorbed to a column of p-aminobenzamidine-//-sepharose and eluted with free benzamidine. Recombination of the dialyzed eluate with the filtrate from the column reinstituted conversion of the receptor from 81K to 81K1, the latter exhibiting an apparent molecular weight of 74,000 daltons in sodium dodecyl sulfate polyacrylamide gel analysis. The eluate from the p-aminobenzamidine column was shown to contain a component, coincident on gels with both protein and modification activity, which by mutational and other analyses appears to be identical with protein a of the outer membrane.  相似文献   

16.
The phytopathogenic enterobacterium Erwinia chrysanthemi excretes multiple isozymes of the plant tissue-disintegrating enzyme, pectate lyase (PL). Genes encoding PL were cloned from E. chrysanthemi CUCPB 1237 into Escherichia coli HB101 by inserting Sau3A-generated DNA fragments into the BamHI site of pBR322 and then screening recombinant transformants for the ability to sink into pectate semisolid agar. Restriction mapping of the cloned DNA in eight pectolytic transformants revealed overlapping portions of a 9.8-kilobase region of the E. chrysanthemi genome. Deletion derivatives of these plasmids were used to localize the pectolytic genotype to a 2.5-kilobase region of the cloned DNA. PL gene expression in E. coli was independent of vector promoters, repressed by glucose, and not induced by galacturonan. PL accumulated largely in the periplasmic space of E. coli. An activity stain used in conjunction with ultrathin-layer isoelectric focusing resolved the PL in E. chrysanthemi culture supernatants and shock fluids of E. coli clones into multiple forms. One isozyme with an apparent pI of 7.8 was produced at a far higher level in E. coli and was common to all of the pectolytic clones. Activity staining of renatured PL in sodium dodecyl sulfate-polyacrylamide gels revealed that this isozyme comigrated with the corresponding isozyme produced by E. chrysanthemi. The PL isozyme profiles produced by different clones and deletion derivative subclones suggest that the cloned region contains at least two PL isozyme structural genes. Pectolytic E. coli clones possessed a limited ability to macerate potato tuber tissues.  相似文献   

17.
Under iron limitation, the plant pathogen Erwinia chrysanthemi produces the catechol-type siderophore chrysobactin, which acts as a virulence factor. It can also use enterobactin as a xenosiderophore. We began this work by sequencing the 5'-upstream region of the fct-cbsCEBA operon, which encodes the ferric chrysobactin receptor and proteins involved in synthesis of the catechol moiety. We identified a new iron-regulated gene (cbsH) transcribed divergently relative to the fct gene, the translated sequence of which is 45.6% identical to that of Escherichia coli ferric enterobactin esterase. Insertions within this gene interrupt the chrysobactin biosynthetic pathway by exerting a polar effect on a downstream gene with some sequence identity to the E. coli enterobactin synthase gene. These mutations had no effect on the ability of the bacterium to obtain iron from enterobactin, showing that a functional cbsH gene is not required for iron removal from ferric enterobactin in E. chrysanthemi. The cbsH-negative mutants were less able to utilize ferric chrysobactin, and this effect was not caused by a defect in transport per se. In a nonpolar cbsH-negative mutant, chrysobactin accumulated intracellularly. These defects were rescued by the cbsH gene supplied on a plasmid. The amino acid sequence of the CbsH protein revealed characteristics of the S9 prolyl oligopeptidase family. Ferric chrysobactin hydrolysis was detected in cell extracts from a cbsH-positive strain that was inhibited by diisopropyl fluorophosphate. These data are consistent with the fact that chrysobactin is a d-lysyl-l-serine derivative. M?ssbauer spectroscopy of whole cells at various states of (57)Fe-labeled chrysobactin uptake showed that this enzyme is not required for iron removal from chrysobactin in vivo. The CbsH protein may therefore be regarded as a peptidase that prevents the bacterial cells from being intracellularly iron-depleted by chrysobactin.  相似文献   

18.
The composition of the outer membrane channels formed by the OmpF and OmpC porins is important in peptide permeation, and elimination of these proteins from the Escherichia coli outer membrane results in a cell in which the primary means for peptide permeation through this cell structure has been lost. E. coli peptide transport mutants which harbor defects in genes other than the ompF/ompC genes have been isolated on the basis of their resistance to toxic tripeptides. The genetic defects carried by these oligopeptide permease-negative (Opp-) strains were found to map in two distinct chromosomal locations. One opp locus was trp linked and mapped to the interval between att phi 80 and galU. Complementation studies with F'123 opp derivatives indicated that this peptide transport locus resembles that characterized in Salmonella typhimurium as a tetracistronic operon (B. G. Hogarth and C. F. Higgins, J. Bacteriol. 153:1548-1551, 1983). The second opp locus, which we have designated oppE, was mapped to the interval between dnaC and hsd at 98.5 min on the E. coli chromosome. The differences in peptide utilization, sensitivity and resistance to toxic peptides, and the L-[U-14C]alanyl-L-alanyl-L-alanine transport properties observed with these Opp-E. coli strains demonstrated that the transport systems encoded by the trp-linked opp genes and by the oppE gene(s) have different substrate preferences. Mutants harboring defects in both peptide transport loci defined in this study would not grow on nutritional peptides except for tri-L-methionine, were totally resistant to toxic peptides, and would not actively transport L-[U-14C]alanyl-L-alanyl-L-alanine.  相似文献   

19.
Analysis of the Escherichia coli K10 capsule gene cluster identified two regions, regions 1 and 3, conserved between different group III capsule gene clusters. Region 1 encodes homologues of KpsD, KpsM, KpsT, and KpsE proteins, and region 3 encodes homologues of the KpsC and KpsS proteins. An rfaH mutation abolished K10 capsule production, suggesting that expression of the K10 capsule was regulated by RfaH in a manner analogous to group II capsule gene clusters. An IS3 element and a phiR73-like prophage, both of which may have played a role in the acquisition of group III capsule gene clusters, were detected flanking the K10 capsule genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号