首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Circahoralian rhythm of the intensity of 3H-lysine incorporation into proteins of the retina ganglionic cells and of the protein synthesis rate in the isolated retina with an amplitude of fluctuations of 35-36% of the mean has been found in active adult susliks. During hibernation, no circahoralian fluctuations of protein metabolism were recorded. Circahoralian rhythms of protein metabolism can serve as a marker of the tissue functional activity.  相似文献   

2.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel (Funambulus pennanti). Palm squirrels showed strongly diurnal locomotor activity rhythms (? 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

3.
A recent focus of chronobiological studies has been to establish diurnal models as alternatives to the more frequently used nocturnal rodents. In the present study, light-dark (LD) entrainment characteristics were examined in one diurnal species, the Indian palm squirrel ( Funambulus pennanti ). Palm squirrels showed strongly diurnal locomotor activity rhythms (~ 88 percent) under light-dark (LD) cycles, with activity bimodally distributed during the L phase. In comparison to a dim LD cycle, exposure to a bright LD cycle caused a phase advance in the onset of activity, an increase in daily activity levels and an increase in the duration of activity. Percentage diurnality, however, did not vary between bright and dim LD cycles. Activity rhythms reentrained in significantly fewer days after an 8 hour phase delay of the LD cycle compared to an 8 hour phase advance. In both cases, the direction of reentrainment followed the direction of the LD shift. When exposed to single light pulses (1 hour) presented at the same time each day, 6/7 squirrels entrained. Under a skeletal photoperiod cycle (2 x 1 hour light pulses each day), 6/8 squirrels showed stable entrainment. The remaining squirrels exhibited rhythm splitting, with each component synchronising in an unstable manner with one of the light pulses. Under entrainment to single light pulses and to the skeletal photoperiod cycle, the phase angle of entrainment was negatively correlated with t. Finally, when exposed to a skeletal scotoperiod cycle (2 x 1-hour dark pulses each day), only 3/8 squirrels entrained, while the others free-ran. Two of the entrained squirrels showed spontaneous phase reversals during entrainment. As with other species, the activity rhythm of palm squirrels appears to be controlled by two separate self-sustaining oscillators. The strongly diurnal nature of palm squirrels make them a promising diurnal model for studies examining endogenous and exogenous influences on circadian functioning.  相似文献   

4.
1. Zeitgebers for circannual rhythms have been elusive. Demonstration that an external factor is a zeitgeber requires proof of a phase-shift that endures for several years. 2. The California ground squirrel (Spermophilus beecheyi) is an ideal subject. Many features of behavior have circannual rhythms of which change in mass is the easiest to measure. The squirrels thrive in captivity for up to 10 years. The squirrels were kept in individual cages in an air conditioned room, fed lab chow ad lib, and weighed twice a month. They were exposed to a 6-month phase shift of (a) length of day (b) seasonal change in temperature, (c) both, (d) seasonal cycle of irradiance. 3. The squirrels maintained circannual rhythms for up to 9 years. Entrainment was evident only by squirrels exposed to seasonal change in irradiance.  相似文献   

5.
The RNA and both the total and basic protein content of individual cells were determined by cytospectrophotometry in neurons and perineuronal oligodendroglia of the hypothalamic supraoptic nucleus in rats subjected to various stresses, as well as in ground squirrels during natural hibernation. Barbiturate narcosis and deep cooling, which induced a decrease in body temperature in rats and hibernation in squirrels, caused a marked decrease of all macromolecular constituents in neurons. A similar decrease was found in the perineuronal oligodendroglia in rats, but an increase was observed in ground squirrels. After cessation of cooling, while the body temperature of the animals returned to normal, the neurons, but not the oligodendroglia, of rats showed a significant accumulation of RNA, while RNA accumulated in both neurons and perineuronal oligodendroglia in ground squirrels. Milder cooling of rats, which did not lower their body temperature, induced reciprocal changes in basic-protein content in neuronal and glial cell nuclei, with the accumulation of protein occurring initially in neurons, and subsequently in glia. When cold adaptation was accomplished, the basic protein content of neurons and glial cells returned to the control level. Four days after adrenalectomy in rats, the RNA content decreased in oligodendroglia but not in neurons of the supraoptic nucleus. This effect was completely abolished by daily injections of cortisol in the adrenalectomized animals. The data obtained indicate the existence of differences in metabolic responses to stress between neurons and glial cells of the supraoptic nucleus of the hypothalamus.  相似文献   

6.
The frequency demultiplication hypothesis (FDH) posits that circannual rhythms are generated from circadian cycles by frequency transformation to the lower-frequency rhythm. To test the FDH, we determined the periods of the circannual body mass and estrous cycles of golden-mantled ground squirrels with circadian locomotor activity rhythms entrained to 23-, 24-, or 25-hr days (T-cycles). Circannual period length did not differ among squirrels entrained to the different T-cycles; intergroup ranges were 298-314 days and 303-312 days, respectively, for body mass and estrus. These results are not consistent with the FDH and suggest instead that separate mechanisms generate circadian and circannual rhythms. In ground squirrels the circannual system influences circadian organization, but a reciprocal influence of circadian on circannual rhythms has yet to be demonstrated.  相似文献   

7.
In indigenous arctic reindeer and ptarmigan, circadian rhythms are not expressed during the constant light of summer or constant dark of winter, and it has been hypothesized that a seasonal absence of circadian rhythms is common to all vertebrate residents of polar regions. Here, we show that, while free-living arctic ground squirrels do not express circadian rhythms during the heterothermic and pre-emergent euthermic intervals of hibernation, they display entrained daily rhythms of body temperature (T(b)) throughout their active season, which includes six weeks of constant sun. In winter, ground squirrels are arrhythmic and regulate core body temperatures to within ±0.2°C for up to 18 days during steady-state torpor. In spring, after the use of torpor ends, male but not female ground squirrels, resume euthermic levels of T(b) in their dark burrows but remain arrhythmic for up to 27 days. However, once activity on the surface begins, both sexes exhibit robust 24 h cycles of body temperature. We suggest that persistence of nycthemeral rhythms through the polar summer enables ground squirrels to minimize thermoregulatory costs. However, the environmental cues (zeitgebers) used to entrain rhythms during the constant light of the arctic summer in these semi-fossorial rodents are unknown.  相似文献   

8.
The efficacy of photoperiod as a zeitgeber for entrainment of circannual body weight and estrous rhythms was tested in female golden-mantled ground squirrels maintained for 3 or more years in either a simulated natural photoperiod (SNP) or a fixed LD 14:10 photoperiod (FP). The role of the retinohypothalamic tract--suprachiasmatic nucleus (RHT-SCN) projection in photic entrainment was assessed in animals that sustained destruction of the SCN (SCNX). Circannual rhythms were lengthened by the SNP as compared to the FP. Mean periods (tau's) for neurologically intact animals in the third year of testing were 49.6 +/- 0.3 weeks and 43.1 +/- 1.2 weeks (p less than 0.001) for the SNP and FP groups, respectively; furthermore, 56% and 7% of animals in these groups had tau's not significantly different from 365 days (p less than 0.005), and within-group variability was lower for SNP than for FP squirrels (p less than 0.01). SCNX squirrels differed from animals with the SCN intact (SCNC), as evidenced by higher within-group variability (p less than 0.001); only 29% of SCNX squirrels had tau's not different from 365 days (p less than 0.03 compared to the SCNC group). The coupling between estrous and body weight rhythms that was evident in SCN-intact SNP and FP squirrels was disrupted in SCNX animals. The RHT-SCN pathway is implicated in entrainment and in maintenance of normal phase relations among the several circannual rhythms. In a second experiment, female squirrels were maintained for 2.5 years in an accelerated SNP that compressed two normal annual photocycles into each calendar year. Of 12 squirrels, 3 had tau's that did not differ significantly from 6 months; 6 had tau's equivalent to 12 months; and 3 had tau's significantly different from both 6 months and 12 months. The data suggest that photoperiod is a major zeitgeber for entrainment of golden-mantled ground squirrels circannual rhythms.  相似文献   

9.
Entrainment of circannual rhythms of body mass and reproduction was monitored for 3 years in female golden-mantled ground squirrels maintained in a simulated natural photoperiod. Both pinealectomized and pineal-intact squirrels generated circannual rhythms of body mass and estrus, but only the intact animals entrained these rhythms to a period of 365 days. In the second and third years after treatment, the period of the body mass rhythm was significantly shorter than 365 days for pinealectomized squirrels, and variance in tau among these animals was significantly greater than for intact squirrels. A similar pattern was evident in the rhythm of reproduction, which was phase-disrupted in pinealectomized squirrels but entrained in intacts. Seasonal changes in duration of nocturnal melatonin secretion by the pineal appear to be necessary to produce phase-delays required to entrain the circannual clock to a period of 12 months.  相似文献   

10.
Winter sleep of the ground squirrel Spermophilus undulatus was accompanied by a 20% decrease in phospholipid content (µg phospholipid per 1 mg protein) in microsomal fractions of the liver as compared with summer-active squirrels. The phosphatidylcholine level (mol %) in hibernating squirrels was lower than in summer-active squirrels, and the content of sphingomyelin (mol %) during the torpor bout was higher than in winter- and summer-active squirrels. The cholesterol, fatty acid, monoglyceride, and diglyceride levels in the microsomal fraction of the liver were elevated during hibernation. Pronounced seasonal changes in the lipid/protein ratio implicate the lipids of the liver microsomal fraction in adaptation of the ground squirrel to hibernation.  相似文献   

11.
In two species of hibernators, hamsters and ground squirrels, erythrocytes were collected by heart puncture and the K content of the cells of hibernating individuals was compared with that of awake individuals. The K concentration of hamsters did not decline significantly during each bout of hibernation (maximum period of 5 days) but in long-term bouts in ground squirrels (i.e. more than 5 days) the K concentration of cells dropped significantly. When ground squirrels were allowed to rewarm the K content of cells rose toward normal values within a few hours. Erythrocytes of both hamsters and ground squirrels lose K more slowly than those of guinea pigs (nonhibernators) when stored in vitro for up to 10 days at 5°C. In ground squirrels the rate of loss of K during storage is the same as in vivo during hibernation, and stored cells taken from hibernating ground squirrels also lose K at the same rate. The rate of loss of K from guinea pig cells corresponded with that predicted from passive diffusion unopposed by transport. The actual rate of loss of K from ground squirrel cells was slower than such a predicted rate but corresponded with it when glucose was omitted from the storage medium or ouabain was added to it. Despite the slight loss of K that may occur in hibernation, therefore, the cells of hibernators are more cold adapted than those of a nonhibernating mammal, and this adaptation depends in part upon active transport.  相似文献   

12.
The content of neutral lipids in tissue homogenates and liver cell nuclei of hibernating Yakutian ground squirrels was studied. In homogenates, hibernation increases the content of fatty acids and reduces the content of glycerides and cholesterol. When studying the liver cell nuclei of torpid winter ground squirrels, we detected a twofold increase in the content of fatty acids, cholesterol, and monoglycerides as compared to the “summer” ground squirrels. In the active “winter” ground squirrels, as compared to the torpid winter ones, the content of cholesterol did not change, whereas the content of fatty acids, monoglycerides, and diglycerides decreased but remained higher than in the “summer” ground squirrels.  相似文献   

13.
Female golden-mantled ground squirrels, maintained in an LD 14:10 photoperiod at 23 degrees C, sustained lesions of the paraventricular nucleus (PVN) or sham operations. Body weight and reproductive status were recorded weekly pre- and postoperatively. Bilateral lesions of the PVN did not eliminate, phase-shift, or otherwise disrupt the circannual rhythms of body mass or reproduction. Absolute levels of body weight were unaffected by PVN ablation. The PVN is not an essential component of the oscillatory system that generates circannual cycles in ground squirrels.  相似文献   

14.
Organisms respond to cyclical environmental conditions by entraining their endogenous biological rhythms. Such physiological responses are expected to be substantial for species inhabiting arid environments which incur large variations in daily and seasonal ambient temperature (T(a)). We measured core body temperature (T(b)) daily rhythms of Cape ground squirrels Xerus inauris inhabiting an area of Kalahari grassland for six months from the Austral winter through to the summer. Squirrels inhabited two different areas: an exposed flood plain and a nearby wooded, shady area, and occurred in different social group sizes, defined by the number of individuals that shared a sleeping burrow. Of a suite of environmental variables measured, maximal daily T(a) provided the greatest explanatory power for mean T(b) whereas sunrise had greatest power for T(b) acrophase. There were significant changes in mean T(b) and T(b) acrophase over time with mean T(b) increasing and T(b) acrophase becoming earlier as the season progressed. Squirrels also emerged from their burrows earlier and returned to them later over the measurement period. Greater increases in T(b), sometimes in excess of 5°C, were noted during the first hour post emergence, after which T(b) remained relatively constant. This is consistent with observations that squirrels entered their burrows during the day to 'offload' heat. In addition, greater T(b) amplitude values were noted in individuals inhabiting the flood plain compared with the woodland suggesting that squirrels dealt with increased environmental variability by attempting to reduce their T(a)-T(b) gradient. Finally, there were significant effects of age and group size on T(b) with a lower and less variable T(b) in younger individuals and those from larger group sizes. These data indicate that Cape ground squirrels have a labile T(b) which is sensitive to a number of abiotic and biotic factors and which enables them to be active in a harsh and variable environment.  相似文献   

15.
The intraspecies variability of Spermophilus relictus sensu lato was studied based on 27 measurements of skulls from 67 specimens of relict ground squirrels (S. relictus) and 66 specimens of Tien Shan ground squirrels (S. ralli), as well as six specimens of the relict ground squirrel from the Gissar Ridge (Tien Shan). A colorimetric analysis of skins of relict ground squirrels (19 specimens, including three individuals from the Gissar Ridge) and Tien Shan ground squirrels (19 specimens) was made. Significant intraspecies variability was found in the relict and Issyk-Kul ground squirrels, whereas the interspecies differences were small, raising questions about the species independence of the Tien Shan ground squirrel (S. ralli).  相似文献   

16.
The circadian systems of two burrowing rodents, the normothermic diurnal antelope ground squirrel (Ammospermophilus leucurus) and the heterothermic nocturnal Syrian hamster (Mesocricetus auratus) were compared with respect to entrainment by temperature cycles. Both species were subjected to the same ambient temperature (Ta) cycles with amplitudes between 4 and 12ºC at constant illuminations (100 and 0.05 lux in squirrels; 1.0 lux in hamsters). Wheel running activity was continuously measured. There was considerable interindividual variation in the daily pattern of wheel-running activity and in the ability to entrain to Ta cycles of the same amplitude in both species. The activity rhythms of about 33 to 67% of the animals of the two species entrained to Ta cycles with amplitudes of 6 to 12ºC. One of six squirrels and one of nine hamsters even entrained to Ta cycles of 4ºC. In the antelope ground squirrels, activity occurred predominantly in the cooler phase of the Ta cycle, whereas hamsters were mainly active during the warmer phase. In some squirrels, the activity rhythms were split in two main components which were both entrained to the cooler fraction of the Ta cycle, sometimes with additional (masking) activity during the warmer fraction (above 30ºC). The results do not support the earlier view that temperature cycles affect the circadian systems of heterothermic mammals, including hibernators, more strongly than those of normothermic species. It is suggested that behavioral and physiological adjustments to the environmental conditions play an important role for mammalian circadian systems to respond to temperature changes as a zeitgeber.  相似文献   

17.
The circadian systems of two burrowing rodents, the normothermic diurnal antelope ground squirrel (Ammospermophilus leucurus) and the heterothermic nocturnal Syrian hamster (Mesocricetus auratus) were compared with respect to entrainment by temperature cycles. Both species were subjected to the same ambient temperature (Ta) cycles with amplitudes between 4 and 12ºC at constant illuminations (100 and 0.05 lux in squirrels; 1.0 lux in hamsters). Wheel running activity was continuously measured. There was considerable interindividual variation in the daily pattern of wheel-running activity and in the ability to entrain to Ta cycles of the same amplitude in both species. The activity rhythms of about 33 to 67% of the animals of the two species entrained to Ta cycles with amplitudes of 6 to 12ºC. One of six squirrels and one of nine hamsters even entrained to Ta cycles of 4ºC. In the antelope ground squirrels, activity occurred predominantly in the cooler phase of the Ta cycle, whereas hamsters were mainly active during the warmer phase. In some squirrels, the activity rhythms were split in two main components which were both entrained to the cooler fraction of the Ta cycle, sometimes with additional (masking) activity during the warmer fraction (above 30ºC). The results do not support the earlier view that temperature cycles affect the circadian systems of heterothermic mammals, including hibernators, more strongly than those of normothermic species. It is suggested that behavioral and physiological adjustments to the environmental conditions play an important role for mammalian circadian systems to respond to temperature changes as a zeitgeber.  相似文献   

18.
Malate dehydrogenase activity and soluble protein content in testes from rats exposed to a 14:00 h light:10:00 h dark photoperiod, have been determined every two or four hours over a 24 hour period in 5, 15, 25 and 120 day-old rats. By using the Cosinor method, the ontogeny of an unimodal rhythm was studied for MDH activity and soluble protein content in testis. In 5 and 15 day-old rats, the MDH acrophases were recorded around 19:00 h and 17:00 h, respectively. Rats aged 25 and 110 days showed the MDH acrophases during the dark period. An inversion of the MDH circadian rhythms was detected in 25 day-old compared to those of 5 and 15 day-old rats. An inversion of the protein circadian rhythm was also detected at 15 days compared to that at 5 days. These inversions persist in the adult rats. The amplitude of the MDH and protein rhythms reached the lowest value in adulthood. The mean daily value of testicular MDH increased between day 5 and 15, decreasing at day 35 and remaining unchanged until adulthood. The variation of malate dehydrogenase activity, soluble protein content levels, and the circadian rhythm parameters during the maturation process may be related to gonad development.  相似文献   

19.
Malate dehydrogenase activity and soluble protein content in testes from rats exposed to a 14:00 h light:10:00 h dark photoperiod, have been determined every two or four hours over a 24 hour period in 5, 15, 25 and 120 day-old rats. By using the Cosinor method, the ontogeny of an unimodal rhythm was studied for MDH activity and soluble protein content in testis. In 5 and 15 day-old rats, the MDH acrophases were recorded around 19:00 h and 17:00 h, respectively. Rats aged 25 and 110 days showed the MDH acrophases during the dark period. An inversion of the MDH circadian rhythms was detected in 25 day-old compared to those of 5 and 15 day-old rats. An inversion of the protein circadian rhythm was also detected at 15 days compared to that at 5 days. These inversions persist in the adult rats. The amplitude of the MDH and protein rhythms reached the lowest value in adulthood. The mean daily value of testicular MDH increased between day 5 and 15, decreasing at day 35 and remaining unchanged until adulthood. The variation of malate dehydrogenase activity, soluble protein content levels, and the circadian rhythm parameters during the maturation process may be related to gonad development.  相似文献   

20.
In golden-mantled ground squirrels, phase angles of entrainment of circadian locomotor activity to a fixed light-dark cycle differ markedly between subjective summer and winter. A change in ambient temperature affects entrainment only during subjective winter when it also produces pronounced effects on body temperature (Tb). It was previously proposed that variations in Tb are causally related to the circannual rhythm in circadian entrainment. To test this hypothesis, wheel-running activity and Tb were monitored for 12 to 14 months in castrated male ground squirrels housed in a 14:10 LD photocycle at 21 degrees C. Animals were treated with testosterone implants that eliminated hibernation and prevented the marked winter decline in Tb; these squirrels manifested circannual changes in circadian entrainment indistinguishable from those of untreated animals. Both groups exhibited pronounced changes in phase angle and alpha of circadian wheel-running and Tb rhythms. Seasonal variation in Tb is not necessary for circannual changes in circadian organization of golden-mantled ground squirrels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号