首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The elasmobranch nucleus sacci vasculosi was studied by means of electron microscopy (in the dogfish) and immunocytochemistry (in the dogfish and the skate) by using antibodies against tyrosine hydroxylase, alpha-melanocyte-stimulating hormone, somatostatin, serotonin, and substance P. Ultrastructural study of the dogfish nucleus sacci vasculosi shows the presence of medium-sized cells that possess numerous mitochondria but that have no dense-core vesicles in the cytoplasm or in cell processes. Fibres of the conspicuous tractus sacci vasculosi have a beaded appearance and form conventional synapses with dendrites and cell perikarya of the nucleus sacci vasculosi. The perikarya of this hypothalamic nucleus were not immunoreactive to any of the antibodies tested, and fibres immunopositive to tyrosine hydroxylase, alpha-melanocyte-stimulating hormone, somatostatin, serotonin, and substance P were scarce within this nucleus, in both the dogfish and the skate. Dorsal to the nucleus sacci vasculosi, there are numerous positive neuronal processes in addition to many small neurons that show immunoreactivity to alpha-melanocyte-stimulating hormone, somatostatin and tyrosine hydroxylase. Two types of neuron occur in this dorsal region, displaying dense-core vesicles of either 100–160 nm or 60–100 nm diameter in their cytoplasm; they were identified as peptide-containing and monoamine-containing neurons, respectively. The neuropil of this region has a significantly different ultrastructure from that of the nucleus sacci vasculosi, with many processes containing dense-core vesicles. This group of neurons, located dorsal to the nucleus sacci vasculosi and showing (a) immunoreactivity to neuropeptides or to monoamine-synthesizing enzyme, and (b) cytoplasm with dense-core vesicles, was considered not to be a part of the nucleus sacci vasculosi but rather part of the nucleus tuberculi posterioris. These results support the non-peptidergic and non-aminergic character of the nucleus sacci vasculosi.  相似文献   

2.
Nerve growth factor (NGF) promotes the outgrowth of neurites from cultured adrenal chromaffin cells from adult rhesus monkeys, but little is known about the distribution, at the cellular level, of the NGF receptors (NGFR) responsible for this response. We examined changes in immunostaining for NGFR in chromaffin cells cultured for 4 weeks in the presence or absence of NGF, with or without dexamethasone (DEX), which inhibits neuritic outgrowth from these cells. Purified cultures of adrenal chromaffin cells from adult rhesus monkeys were grown for up to 9 weeks in NGF, DEX, NGF plus DEX, or control medium. Cells were immunolabeled with three different monoclonal antibodies directed against different epitopes of the human NGFR. Although the distribution of immunolabeling was not uniform from cell to cell, the overall intensity of NGFR immunolabeling varied dramatically between different growth conditions. Of greatest interest, DEX-treated cells stained the most intensely at all time points, while the intensity of immunolabeling was much fainter in NGF-treated cells and decreased with time in culture. In contrast to the intensity of labeling, the proportion of chromaffin cells with immunoreactivity increased with time in all treatment groups. Thus, GCs do not appear to antagonize the effects of NGF merely by decreasing the total number of immunoreactive NGFR on the surface of these cells.  相似文献   

3.
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.  相似文献   

4.
Summary Normal postnatal rat chromaffin cells and rat pheochromocytoma cells are known to show extensive Nerve Growth Factor (NGF)-induced process outgrowth in culture, and this outgrowth from the postnatal chromaffin cells is abolished by the corticosteroid dexamethasone. To determine whether adult rat chromaffin cells respond to NGF and dexamethasone, dissociated adrenal medullary cells from 3-month-old rats were cultured for 30 days in the presence or absence of these agents. Such cultures contained typical chromaffin cells, chromaffin cells with processes, and neurons. Fewer than 2 % of normal adult chromaffin cells formed processes under any of the conditions studied, and statistically significant changes in this proportion were not detectable in the presence of NGF or dexamethasone. Adrenal medullary neurons, however, were observed only in the presence of NGF, in cultures with or without dexamethasone, and thus appear to be previously unreported NGF targets which require NGF for survival or process outgrowth. Dexamethasone markedly increased total catecholamine content, total content of epinephrine, and tyrosine hydroxylase activity in cultures with or without NGF. In contrast, postnatal rat chromaffin and rat pheochromocytoma cells which have been studied in culture do not produce epinephrine under any of these conditions. It is concluded that rat adrenal chromaffin cells undergo age-related changes in both structural and functional plasticity. The in vitro characteristics of rat pheochromocytoma cells more closely resemble those of postnatal than of adult rat chromaffin cells, but may not entirely reflect the properties of the majority of chromaffin cells in either age group.  相似文献   

5.
Adrenal chromaffin cells and sympathetic neurons are both derivatives of the neural crest. Despite their morphological and functional differences, chromaffin cells retain some developmental plasticity and if treated with Nerve Growth Factor (NGF), can express certain characteristics of sympathetic neurons. However, there is some age and species variability in the response of chromaffin cells to NGF: in general chromaffin cells from adult animals are not considered to be dependent on NGF for survival, and chromaffin cells from adults of several species fail to respond to NGF in vitro by growing neurites. This is in contrast to the dramatic effects of NGF on chromaffin cells from perinatal rats. We have examined the requirements of chromaffin cells from adult rhesus monkeys to survive, to proliferate, and to express a neuronal morphology in vitro. NGF greatly enhances the proportion of rhesus chromaffin cells that form neurites and the length of the neurites that are formed, but the conversion to a neuronal phenotype is more limited than in chromaffin cells cultured from young rats. NGF also enhances rhesus chromaffin cell survival, but fails to stimulate their proliferation, in contrast to its effect on perinatal rat cells [18]. Glucocorticoid hormones (GCs) specifically antagonize the effects of NGF on neuritic outgrowth while promoting chromaffin cell survival. Thus adrenal chromaffin cells from rhesus monkeys retain a degree of developmental plasticity even in the adult animal.  相似文献   

6.
Abstract: Rats were injected with a large dose of reserpine known to stimulate the adrenal medulla. Various times after drug treatment the mRNA levels of several constituents of large dense-core vesicles were determined by northern blot analysis and in situ hybridization. The latter method allowed detection of changes in mRNA levels not only in chromaffin cells, but also in the ganglion cells found in adrenal medulla. Levels of the mRNAs of secretory components of large dense-core vesicles (chromogranins A and B., secretogranin II, VGF, and neuropeptide Y) increased in chromaffin cells by 215–857% after 1–3 days of drug treatment. For partly membrane-bound components (dopamine β-hydroxylase, prohormone convertase 2, carboxypeptidase H., and peptidylglycine α-amidating monooxygenase) the changes ranged from 182 to 315%, whereas for glycoprotein III and for intrinsic membrane proteins (cytochrome b 661 and vesicle monoamine transporter 2) no change occurred. In ganglion cells the mRNAs that could be detected for VGF, neuropeptide Y., secretogranin II, carboxypeptidase H., and vesicle monoamine transporter 1 showed an analogous pattern of change, with significant increases for the secretory proteins and no change for the membrane components. From these and previous results we suggest the following concept: Long-lasting stimulation of chromaffin cells or neurons does not induce the biosynthesis of a larger number of vesicles but rather leads to the formation of vesicles containing higher secretory quanta of chromogranins and neuropeptides. Key Words : ChromograninSecretogranin II—Monoamine transporter—Prohormone convertase 2—Carboxypeptidase H—Cytochrome b 661-Clusterin.  相似文献   

7.
Adrenal chromaffin cells respond to nerve growth factor (NGF) in vitro by expressing neuronal characteristics and, over a period of 2 to 4 weeks, transdifferentiating into postmitotic sympathetic neurons. Phorbol myristate acetate (PMA) is a potent activator of protein kinase C (PKC); chronic exposure to PMA mimics the initial actions of NGF by promoting the outgrowth of neurites and increasing the incorporation of [3H] thymidine in primary cultures of adrenal chromaffin cells from young rats. PMA and NGF affect the same populations of cells and even individual neurites. These effects are specific for active phorbol ester and do not result from the release of NGF or FGF in the cultures. As in the case of NGF, the effects are inhibited by glucocorticoids. The PKC inhibitor staurosporine inhibits the effects of PMA, as well as those of NGF, in a dose-dependent manner. These results suggest that a modulation in activity of PKC is important in the neuritogenic and proliferative effects of NGF, at least for an initial period of approximately 1 week.  相似文献   

8.
Neurotrophic factors, such as nerve growth factor (NGF), have been shown to promote the differentiation of neural crest neuroblasts into sympathetic neurons, whereas glucocorticoids promote the endocrine phenotype of adrenal medullary chromaffin cells. This pluripotency is preserved to some extent in adult chromaffin cells, with NGF and other neurotrophic factors influencing the differentiation of these cells. In this study, the effects of glial cell line-derived neurotrophic factor (GDNF) on explanted chromaffin tissue have been investigated. The localization of mRNAs corresponding to the two components of the GDNF receptor, GDNF family receptor alpha 1 (GFRalpha1) and Ret, were demonstrated in adult adrenal medullary ganglion cells. GFRalpha1 mRNA was expressed in explanted chromaffin tissue at levels dependent on the presence of serum in the medium but decreased on the addition of blocking antibodies against transforming growth factor beta (TGFbeta). However, TGFbeta1 (1 ng/ml) did not upregulate GFRalpha1 mRNA expression when added to serum-free medium. GDNF induced neurite formation from chromaffin cells, as measured by the ratio of neurite-bearing versus total number of chromaffin cells in primary cultures of adult adrenal medulla. The most potent dose inducing neurites from chromaffin cells was 100 ng/ml GDNF. However, this dose was not as efficient as that seen when chromaffin cells were stimulated with NGF (100 ng/ml). Thus, adrenal medullary cells express mRNAs for the GDNF receptor components Ret and GFRalpha1, increase their expression upon being cultured in serum-containing medium and respond to GDNF treatment with an increase in the number of cells that develop nerve processes.  相似文献   

9.
Summary Expiants of adrenal medullary tissue taken from newborn guinea pigs were grown in culture for up to two weeks. The explants exhibited sparse outgrowth of neurite-like processes, in contrast to adrenal medullae taken from young postnatal rats or adult guinea pigs that were (i) grown under identical conditions (Unsicker and Chamley 1977) or (ii) transplanted to the anterior chamber of the eye (Unsicker et al. 1981), respectively. Nerve growth factor (10–100 ng/ml, 2.5S NGF) did not enhance formation of processes. However, electron-microscopic investigations revealed the presence of numerous processes within the explants, which extended from chromaffin cells and were characterized by longitudinally oriented cytoskeletal structures, various populations of clear and dense-cored vesicles, varicosities and growth cones. Chromaffin cell bodies largely resembled their in situ-counterparts, but had fewer and smaller storage vesicles than controls.The results are discussed in light of recent findings regarding the potency of NGF and NGF-like growth factors to induce neuronal transdifferentiation of adrenal chromaffin cells.Supported by grants from the Deutsche Forschungsgemeinschaft (SFB 103 and Un 34/6)  相似文献   

10.
The effects of nerve growth factor (NGF) and ciliary neuronotrophic factor (CNTF) on catecholamine content and in vitro activities of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) were studied in adrenal chromaffin cells cultured from 8-day-old rats. Both NGF and CNTF enhanced chromaffin cell survival and partially prevented losses of adrenaline during the 4-day culture period in a dose-dependent manner. CNTF was more potent, although cellular levels of adrenaline and noradrenaline were not maintained. NGF did not add to the effect of CNTF. The effect of CNTF on catecholamine storage was not accompanied by changes in the activities of TH and PNMT. In contrast, NGF induced TH but not PNMT activity. These data indicate differences between the mechanisms by which NGF and CNTF affect adrenal chromaffin cells.  相似文献   

11.
Acetylcholine, released from splanchnic nerve terminals innervating adrenal chromaffin cells, is known to increase synthesis of adrenal tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. The neuropeptide substance P is also present in the splanchnic nerve innervating the adrenal medulla, and this study examined whether substance P has any long-term effects on tyrosine hydroxylase activity and catecholamine levels in cultures of adult bovine adrenal chromaffin cells. When cultures were incubated for 3 days with substance P and carbachol, a cholinergic agonist, substance P (10(-6) M, and greater) completely inhibited the increase in tyrosine hydroxylase activity normally induced by carbachol. Long-term stimulation with carbachol also depleted endogenous catecholamines from the cells and substance P prevented this carbachol-induced depletion of catecholamine content. Substance P by itself, in the absence of carbachol, had only a slight effect on tyrosine hydroxylase activity. 8-Bromoadenosine 3':5'-cyclic monophosphate, an analogue of adenosine 3':5'-cyclic monophosphate, also increases tyrosine hydroxylase activity in chromaffin cells; however, substance P had no effect on the increase in tyrosine hydroxylase activity induced by this analogue. These results indicate that substance P's effects are relatively specific for the carbachol-induced increased in tyrosine hydroxylase activity and that the primary site of action of substance P is not a site common to the mechanism of tyrosine hydroxylase induction by carbachol and 8-bromoadenosine 3':5'-cyclic monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Development of chromaffin cells depends on MASH1 function   总被引:4,自引:0,他引:4  
The sympathoadrenal (SA) cell lineage is a derivative of the neural crest (NC), which gives rise to sympathetic neurons and neuroendocrine chromaffin cells. Signals that are important for specification of these two types of cells are largely unknown. MASH1 plays an important role for neuronal as well as catecholaminergic differentiation. Mash1 knockout mice display severe deficits in sympathetic ganglia, yet their adrenal medulla has been reported to be largely normal suggesting that MASH1 is essential for neuronal but not for neuroendocrine differentiation. We show now that MASH1 function is necessary for the development of the vast majority of chromaffin cells. Most adrenal medullary cells in Mash1(-/-) mice identified by Phox2b immunoreactivity, lack the catecholaminergic marker tyrosine hydroxylase. Mash1 mutant and wild-type mice have almost identical numbers of Phox2b-positive cells in their adrenal glands at embryonic day (E) 13.5; however, only one-third of the Phox2b-positive adrenal cell population seen in Mash1(+/+) mice is maintained in Mash1(-/-) mice at birth. Similar to Phox2b, cells expressing Phox2a and Hand2 (dHand) clearly outnumber TH-positive cells. Most cells in the adrenal medulla of Mash1(-/-) mice do not contain chromaffin granules, display a very immature, neuroblast-like phenotype, and, unlike wild-type adrenal chromaffin cells, show prolonged expression of neurofilament and Ret comparable with that observed in wild-type sympathetic ganglia. However, few chromaffin cells in Mash1(-/-) mice become PNMT positive and downregulate neurofilament and Ret expression. Together, these findings suggest that the development of chromaffin cells does depend on MASH1 function not only for catecholaminergic differentiation but also for general chromaffin cell differentiation.  相似文献   

13.
The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dot-like terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

14.
Summary The present peroxidase-antiperoxidase immunohistochemical study demonstrated a relatively small number of cells with substance P(SP)-like immunoreactivity in the adrenal medulla of rats. These cells were found alone or in small groups, were polygonal in shape and lacked long cytoplasmic processes. At immunoelectron microscopy, the immunoreactive cells were characterized by abundant granular vesicles, and the immunoreactive material was confined to the round core of the vesicles. Thus, it is suggested that SP co-exists with catecholamines in a population of chromaffin cells of the rat adrenal medulla. In addition a few SP-immunoreactive nerve fibers with varicosities were found in the adrenal medulla of rats. They extended between small clusters of chromaffin cells and had their dotlike terminals around and within the cell clusters. The SP-immunoreactive nerve fibers were characterized by the presence of abundant small clear vesicles mixed with a few large granular vesicles; the immunoreactivity appeared in the latter, but was also perfused throughout the entire axoplasm. The nerve fibers formed synapses on nonimmunoreactive chromaffin cells. Judging from the presence of bundles of SP-immunoreactive nerve fibers penetrating the adrenal capsule and cortex as well as the absence of SP-immunoreactive ganglion cells in the medulla, the intramedullary SP-immunoreactive nerve fibers seem to be extrinsic in origin.  相似文献   

15.
We have examined the hypothesis that nonhematopoietic malignancies may contain cells corresponding to those which occur during the differentiation of tissue precursors. Neuroblastoma, an embryonal tumor of the adrenal medulla, was studied because of its well described ability to differentiate both in vivo and in vitro. We examined the expression of four genes during development of the human adrenal medulla: tyrosine hydroxylase, chromagranin A, pG2, and beta-2-microglobulin. The sequential expression of these genes by adrenal neuroblasts marks successive stages during maturation of the chromaffin lineage. We also observed a population of neuroblasts during adrenal medullary development that did not express any of these four genes, suggestive of adrenal medullary cells differentiating along nonchromaffin lineage(s). We then evaluated 27 neuroblastoma cell lines for the expression of these genes and found that 24 expressed chromaffin markers, with 19 of these mimicking the pattern of gene expression found during development. Three cell lines did not express tyrosine hydroxylase, chromogranin A, or pG2, consistent with either a very undifferentiated neural crest cell or maturation along a nonchromaffin lineage. These data indicate that neuroblastoma tumor cells correspond to adrenal neuroblasts arrested during morphogenesis of the adrenal medulla and raise the possibility that malignant transformation of cells at different stages of tissue maturation may contribute to the diversity that characterizes tumors of solid tissues.  相似文献   

16.
D J Anderson  R Axel 《Cell》1986,47(6):1079-1090
Adrenal medullary endocrine (chromaffin) cells and sympathetic neurons both derive from the neural crest. We have found that the embryonic adrenal medulla and sympathetic ganglia are both initially populated by precursors expressing neural-specific genes. By birth, however, the medulla consists largely of chromaffin cells. In primary culture, the medullary precursors have three developmental fates: in NGF they continue to mature into neurons and survive, whereas in glucocorticoid they either extinguish their neuronal properties and exhibit an endocrine phenotype, or else continue to develop into neurons but then die. These data suggest that, in vivo, the adrenal medulla develops through both the glucocorticoid-induced differentiation of bipotential progenitors and the degeneration of committed neuronal precursors, which have migrated into the gland.  相似文献   

17.
Summary The present immunohistochemical study reveals that a small number of chromaffin cells in the rat adrenal medulla exhibit CGRP-like immunoreactivity. All CGRP-immunoreactive cells were found to be chromaffin cells without noradrenaline fluorescence; from combined immunohistochemistry and fluorescence histochemistry we suggest that these are adrenaline cells. In addition, all CGRP-immunoreactive cells simultaneously exhibited NPY-like immunoreactivity. CGRP-chromaffin cells were characterized by abundant chromaffin granules with round cores in which the immunoreactive material was densely localized. These findings suggest the co-existence of CGRP, NPY and adrenaline within the chromaffin granules in a substantial number of chromaffin cells.Thicker and thinner nerve bundles, which included CGRP-immunoreactive nerve fibers, with or without varicosities, penetrated the adrenal capsule. Most of them passed through the cortex and entered the medulla directly, whereas others were distributed in subcapsular regions and among the cortical cells of the zona glomerulosa. Here the CGRP-fibers were in close contact with cortical cells. A few of the fibers supplying the cortex extended further into the medulla. The CGRP-immunoreactive fibers in the medulla were traced among and within small clusters of chromaffin cells and around ganglion cells. The CGRP-fibers were directly apposed to both CGRP-positive and negative chromaffin cells, as well as to ganglion cells. Immunoreactive fibers, which could not be found close to blood vessels, were characterized by the presence of numerous small clear vesicles mixed with a few large granular vesicles. The immunoreactive material was localized in the large granular vesicles and also in the axoplasm. Since no ganglion cells with CGRP-like immunoreactivity were found in the adrenal gland, the CGRP-fibers are regarded as extrinsic in origin. In double-immunofluorescence staining for CGRP and SP, all the SP-immunoreactive fibers corresponded to CGRP-immunoreactive ones in the adrenal gland. This suggests that CGRP-positive fibers in the adrenal gland may be derived from the spinal ganglia, as has been demonstrated with regard to the SP-nerve fibers.  相似文献   

18.
The functional integrity of adrenal chromaffin storage vesicles was studied in the perfused rat adrenal gland subjected to intense exocytosis. Continuous perfusion with 55 mM K+-Krebs solution produced a large and uninterrupted secretion of catecholamines. Total amounts secreted within 45 min were 4.66 micrograms and represented almost 30% of the total tissue catecholamine content. If perfusion with excess K+ was extended to 90 min, the secretion increased further to 5.76 micrograms. Despite such a large secretory response, the catecholamine content of the K+-stimulated adrenal medulla was comparable to that of unstimulated control, suggesting an enhanced resynthesis to maintain the normal levels. Pretreatment of rats with alpha-methyl-p-tyrosine, and including this agent in the perfusion medium during stimulation with K+, caused a marked reduction in catecholamine content. The degree of depletion depended on the extent of stimulation with K+ (45% in 45 min and 60% in 90 min). Although depleted catecholamine stores did not show spontaneous recovery in 2 h, inclusion of tyrosine, L-3,4-dihydroxyphenylalanine or dopamine (but not epinephrine or norepinephrine) completely restored the catecholamine content of previously depleted adrenal medulla. Repletion achieved by tyrosine was time dependent (evident in 30 min and maximum in 2 h) and blocked by alpha-methyl-p-tyrosine but not by calcium deprivation. The ratio of epinephrine to norepinephrine remained constant during various stages of the experiment, suggesting both types of vesicles were equally affected by different treatments. The secretory response (10 Hz for 30 s) was unaffected even though tissue catecholamine stores were significantly depleted (50%). In summary, we have demonstrated that catecholamine content of the isolated perfused adrenal gland can be reduced by stimulation of exocytotic secretion in the presence of tyrosine hydroxylase inhibitor. Since the depleted stores can be fully refilled by synthesis of catecholamines from its precursors, it is suggested that chromaffin vesicles may be reutilized for the purpose of synthesis, storage, and secretion of adrenal medullary hormones.  相似文献   

19.
Summary The expression of the neural cell adhesion molecule, chromagranin A, and catecholamine-synthesizing enzymes (tyrosine hydroxylase and phenylethanolamineN-methyl transferase) in adrenal medulla and para-aortic bodies (paraganglia) of the adult rabbit, was studied by immunofluorescence. The specificity of the neural cell adhesion molecule antibody employed was demonstrated on rabbit tissue by immunoblotting. Neural cell adhesion molecule was found to be expressed not only by adrenal medullary cells but also by extra-adrenal chromaffin cells present in para-aortic bodies. These paraganglionic cells were as intensely immunolabelled for chromagranin A as adrenal medullary chromaffin cells. They were also labelled for the catecholamine-synthesizing enzymes tested here. However, their levels of the adrenalin-synthesizing enzyme phenylethanolamineN-methyl transferase were lower than those of medullary chromaffin cells.  相似文献   

20.
Vesicular monoamine transporters (VMATs) mediate transmitter uptake into neurosecretory vesicles. There are two VMAT isoforms, VMAT1 and VMAT2, encoded by separate genes and displaying different cellular distributions and pharmacological properties. We examined the effect of immobilization stress (IMO) on expression of VMATs in the rat adrenal medulla. Under basal conditions, VMAT1 is widely expressed in all adrenal chromaffin cells, while VMAT2 is co-localized with tyrosine hydroxylase (TH) but not phenylethanolamine N-methyltransferase (PNMT), indicating its expression in norepinephrine (NE)-, but not epinephrine (Epi)-synthesizing chromaffin cells. After exposure to IMO, there was no change in levels of VMAT1 mRNA. However, VMAT2 mRNA was elevated after exposure of rats to 2 h IMO once (1× IMO) or daily for 6 days (6× IMO). The changes in VMAT2 mRNA were reflected by increased VMAT2 protein after the repeated IMO. Immunofluorescence revealed an increased number of cells expressing VMAT2 following repeated IMO and its colocalization with PNMT in many chromaffin cells. The findings suggest an adaptive mechanism in chromaffin cells whereby enhanced catecholamine storage capacity facilitates more efficient utilization of the well-characterized heightened catecholamine biosynthesis with repeated IMO stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号