首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rats injected subcutaneously with 2 mg Se/kg body weight of [75Se]selenocyanate or [14C, 75Se]selenocyanate excreted dimethylselenide (DMSe) in the breath and trimethyl-selenonium ion (TMSe) in the urine. The 24-h respiratory DMSe and urinary TMSe excretions were 26.8 +/- 8.1 and 14.5 +/- 5.1% of the dose, respectively. Tissue concentrations of 75Se were highest in the kidneys (1.89 +/- 0.2% dose/g), liver (1.46 +/- 0.2% dose/g), and blood (0.50 +/- 0.05% dose/ml), and lower (greater than 0.3% dose/g) in the other tissues. Trimethyl-selenonium was the major form (61%) of selenium in urine. Approximately 2% of the dose of doubly labeled SeCN- was excreted unchanged in urine (about 12% of urinary Se). 14C from doubly labeled SeCN- was not present in the methylated selenium metabolites, but a major 14C urinary metabolite was identified as thiocyanate. These results indicate that a substantial part of selenocyanate in the body undergoes metabolism and Se is excreted in methylated forms following scission of the C-Se bond.  相似文献   

2.
The formation of dimethylselenide (respiratory) and trimethylselenonium (urinary) metabolites from [75Se]selenomethionine, [75Se]methylselenomethionineselenonium, [75Se]methylselenocysteine, [75Se]dimethylselenocysteineselenonium, and [75Se]trimethylselenonium was determined using single sc doses of 2 or 0.064 mg Se/kg in male and female rats. The 75Se content of liver, kidney, pancreas, testis, spleen, blood, heart, brain, and skeletal muscle was determined at 0.5 and 24 h. Respiratory 75Se after 24 h was greatest from Se-dimethylselenocysteineselenonium (38 and 17% for the high and low doses, respectively). Respiratory 75Se was about 8% for the high dose of Se-methylselenocysteine and was less for all other compounds. Total 75Se excretion in the urine was highest from rats given trimethylselenonium (about 90%, both doses) and was lowest from rats given selenomethionine (4%, low dose). Urine samples were chromatographed on SP-Sephadex cation-exchange columns and 75Se was eluted with ammonium formate; trimethylselenonium was precipitated with ammonium Reineckete solution and trimethylsulfonium carrier. Urinary trimethylselenonium excretion was greatest from rats given trimethylselenonium, but rats given Se-dimethylselenocysteineselenonium (low dose) excreted 35-45% of the dose as trimethylselenonium ion. The lowest quantity of trimethylselenonium was excreted by rats given the low dose of selenomethionine (0-3%). Pancreas, kidney, and liver showed the highest uptake (% of dose/g) of the selenium compounds. Trimethylselenonium was highly concentrated by the kidney and also showed high myocardial uptake (heart/blood ratio = 5) 0.5 h after injection; the selective uptake of trimethylselenonium in heart was not observed for the other selenonium compounds.  相似文献   

3.
The effects of the presence of mammary tumors on 75Se retention was examined in DMBA-treated rats. Tumor bearing rats fed varying amounts of Se exhibited an inverse linear dose response between dietary Se intake and tissue retention of 75Se in whole body, heart, lungs, ovaries, adrenals, spleen, and muscle. Tumor 75Se retention, however, was independent of the dietary intake of Se. Tumor bearing rats excreted more 75 Se label in the urine compared to both control rats fed the same amount of Se and DMBA-treated animals that remained tumor free. In the short term, no significant differences were seen in tissue retention of 75Se. By 7 d, the increased urinary excretion of the label resulted in significantly decreased retention of 75Se in blood, spleen, liver, lungs, and kidneys of tumor-bearing rats compared to tumor-free animals. The presence of tumors, however, did not affect the liver distribution of the label among cytosolic proteins. These results suggest that tumor bearing animals have an accelerated urinary excretion of Se compared to animals without tumors and that tumors either have a very slow turnover of Se or a low priority for the element.  相似文献   

4.
A selenocysteine-containing selenium-transport protein in rat plasma   总被引:2,自引:0,他引:2  
A selenocysteine-containing rat plasma protein (selenoprotein P) was examined for a possible role in the transport of selenium in the rat. A time-course study of the localization of injected 75Se from [75Se]selenite indicated that one-half of the selenium was sequestered by liver tissue 1 h after injection and that one-fourth of the 75Se in the plasma was attached to selenoprotein P 3 h after injections. By 25 h there was little 75Se in plasma, and much of the 75Se had accumulated in nonhepatic tissues. 75Se was incorporated into selenoprotein P by liver slices in a process that was sensitive to the protein synthesis inhibitor cycloheximide. The fate of 75Se from intracardially injected 75Se-labeled selenoprotein P was followed in rats maintained on selenium-deficient and selenium-sufficient diets. Substantially more of the injected 75Se was present per gram wet weight in the testes and kidneys than the livers of the selenium-deprived rats after 5 h. The results indicate that selenoprotein P is synthesized in rat liver and that it transfers selenium from the liver to extrahepatic tissues.  相似文献   

5.
A reported association between estrogen and selenium status may be important in the regulation of selenium metabolism. In this study, the effect of estrogen status on the metabolism of orally administered (75)Se-selenite and tissue selenium status was investigated. Female Sprague-Dawley rats were bilaterally ovariectomized at 7 weeks of age and implanted with either a placebo pellet (OVX) or pellet containing estradiol (OVX+E2), or were sham operated (Sham). At 12 weeks of age, 60 μCi of (75)Se as selenite was orally administered to OVX and OVX+E2 rats. Blood and organs were collected 1, 3, 6 and 24 h after dosing. Estrogen status was associated with time-dependent differences in distribution of (75)Se in plasma, red blood cell (RBC), liver, heart, kidney, spleen, brain and thymus and incorporation of (75)Se into plasma selenoprotein P (Sepp1) and glutathione peroxidase (GPx). Estrogen treatment also significantly increased selenium concentration and GPx activity in plasma, liver and brain, selenium concentration in RBC and hepatic Sepp1 and GPx1 messenger RNA. These results suggest that estrogen status affects tissue distribution of selenium by modulating Sepp1, as this protein plays a central role in selenium transport.  相似文献   

6.
Retention, dynamics of75Se and65Zn distribution, and elimination were studied in rats after separate or joint single doses of these metals. White female Wistar rats were divided into four groups (fifteen rats each). Group I received Na2 75SeO3 (0.1 mg Se/kg i.g.), group II received Na2 75SeO3+ZnCl2 (5 mg Zn/kg s.c.), group III received65ZnCl2, and group IV received65ZnCl2+Na2SeO3. The zinc and selenium contents in the tissues were estimated during 120 h after administration; excretion in urine and feces of animals was determined throughout the experiment. Combined administration of zinc and selenium resulted in an enhanced selenium retention in the brain, spleen, kidneys, blood, lungs, and heart. A selenium-induced increase in the concentration of zinc was noted in the bowels, blood, liver, kidneys, spleen, brain, and lungs. The effects of the zinc/selenium interaction were visible especially in the lowered level of excretion of these elements. Zinc induced a decrease in the excretion of selenium in urine, with no concomitant changes in the excretion in feces. However, a visible decrease in the excretion of zinc in the feces was observed in the presence of selenium. The present results indicate an occurrence of clear-cut interaction effects between zinc and selenium administered simultaneously in the rat.  相似文献   

7.
Previous research from our Laboratory has shown a greater susceptibility of young animals, when compared to adults, to envenomation by tityustoxin (TsTX), one of the main toxins from Tityus serrulatus scorpion venom. Our hypothesis is that a differential body distribution of TsTX among adult and young animals could account for the worse prognosis of scorpion envenomation in infants. Thus, TsTX labeled with technetium-99m was injected (6 microg, subcutaneous) in adult (150-160 day-old) and young (21-22 day-old) male rats. Groups of animals were sacrificed at different times after TsTX injection (0.08, 1.0, 3.0, 6.0, 12.0 and 24.0 hours) under Urethane anesthesia (140 mg/100 g, i.p.). The brain, heart, lungs, liver, kidneys, spleen and thyroid were excised and blood collected. Young rats presented a shorter latency toxin concentration peak in all studied organs except for the liver and the kidney, when compared to adults. The ratio between the area under the curve of the toxin concentration in each organ and that in blood (Kp) indicates higher accumulation in the organs of young animals mainly for brain, liver and heart. These observations suggest a faster toxin distribution in the organs of young rats. The higher uptake of TsTX in the brain is suggestive of a greater permeability for the toxin along the blood-brain barrier of young rats. In conclusion, the higher uptake in heart, together with data from the brain, may help to elucidate the clinical manifestations frequently observed in children under scorpion envenomation.  相似文献   

8.
The nature of the acid-volatile selenium in the liver of the male rat   总被引:2,自引:1,他引:1  
1. The properties of rat liver acid-volatile selenium have been compared with those of H(2)Se and (CH(3))(2)Se. 2. In model experiments oxidation-sensitive H(2) (75)Se was trapped quantitatively under anaerobic conditions in 0.1m-AgNO(3), and (CH(3))(2) (75)Se was trapped quantitatively in 8m-HNO(3). The acid-labile selenium of a liver homogenate, and of a microsomal fraction, was found to behave quite unlike (CH(3))(2) (75)Se and in a manner indistinguishable from H(2) (75)Se. 3. It was concluded that the acid-volatile material is certainly not (CH(3))(2)Se and that it is probably H(2)Se. 4. The significance of these findings is discussed in relation to current knowledge about the metabolism and detoxication of selenium, and a scheme is proposed which incorporates this knowledge with recent observations on the interactions between trace amounts of selenium and tocopherol, and the production of acute selenium deficiency by Ag(+) in vitamin E-deficient rats.  相似文献   

9.
Radioactive inorganic selenium, administered intraperitoneally at 1 mg/kg body weight to young adult rats, acculumulates in testes for 7 days or longer, whereas liver, kidney and serum levels fall more rapidly. 3–4 h after administration of [75Se]selenite, 55–60% of the radioactivity in the testes was found in the cytosol, associated with protein. Ultragel ACA-22 chromatography of testis cytosol prepared 4 h after 75Se treatment revealed a major selenoprotein having an apparent molecular weight of 59 000. Sodium dedecyl sulfate polyacrylamide gel electrophoresis indicated extensive heterogeneity of radioactivity with apparent molecular weights of about 57 000 and 45 000 and 15 000. Cytosol from rats treated 4 weeks earlier showed predominance of the 15 000 molecular weight [75Se]selenoprotein. Sucrose density gradient ultracentrifugation at either low or high ionic strength demonstrated a single 7 S selenoprotein. Chromatography with Blue-Sepharose indicated that the radioactivity was not associated with albumin. Strong 75Se binding to protein was demonstrated by overnight dialysis against water, 2 M NaCl, β-mercaptoethanol, 8 M urea, selenite. However, 85% of the 75Se was removed by dialysis against 0.5 M NaOh. This stability contrasts with the lability of disulfide reagents of selenite-protein complexes formed in vitro. The fact that selenium is incorporated in substantial amounts into a discrete and stable protein suggests a physiological role for this essential trace element in the testes.  相似文献   

10.
The concentration of selenium (Se), an essential nutrient, is variable in foods, depending, in part, on how and where foods are produced; some foods accumulate substantial amounts of Se when produced on high-Se soils. The chemical form of Se also differs among foods. Broccoli is a Se-accumulating plant that contains many methylated forms of Se, and Se bioavailability from broccoli has been reported to be low. Red meats such as pork or beef could accumulate Se when the animal is fed high-Se diets, and Se from such meats has been reported to be highly bioavailable for selenoprotein synthesis. In a further attempt to characterize the utilization of Se from broccoli and meats such as pork or beef, we have fed rats diets adequate (0.1 μg Se/g diet) in Se or high in Se (1.5 μg S/g diet), with the Se source being either high-Se broccoli or beef. Rats were then given test meals of broccoli or pork intrinsically labeled with 75Se. When dietary Se was nutritionally adequate (0.1 μg/g diet), more 75Se from pork than broccoli was retained in tissues; however, there were no significant differences in whole-body retention when dietary Se was high (1.5 μg/g diet). A significantly greater percentage of 75Se from broccoli than pork was excreted in the urine and dietary Se did not affect urinary excretion of broccoli 75Se, but the amount excreted from pork varied directly with dietary Se intake. Radiolabeled 75Se derived from pork effectively labeled selenoproteins in all tissues examined, but 75Se from broccoli was undetectable in selenoproteins. These differences in retention and distribution of Se from broccoli or pork are consistent with reported differences in bioavailability of Se from beef and broccoli. They also suggest that there are fewer differences in bioavailability when Se is consumed in supranutritional amounts.  相似文献   

11.
The erythrocyte-free, isolated perfused rat liver was used to study the incorporation of selenium into glutathione peroxidase. Gel filtration and ion exchange chromatography of liver supernatant demonstrated 75Se incorporation into glutathione peroxidase. A 9-fold excess of unlabelled selenium as selenite or selenide very effectively reduced 75Se incorporation from L[75Se]-selenocystine, but a 100-fold excess of unlabelled selenium as selenocystine was relatively ineffective as compared to selenite or selenide in diluting 75Se incorporation from [75Se]selenite. These results indicate that selenide and selenite are more readily metabolized than is selenocysteine to the immediate selenium precursor used for glutathione peroxidase synthesis, and suggest a posttranslational modification at another amino acid residue, rather than direct incorporation of selenocysteine, as the mechanism for formation of the presumed selenocysteine moiety of the enzyme.  相似文献   

12.
Subcellular distribution of selenoproteins in the liver of the rat   总被引:6,自引:0,他引:6  
After in vivo labeling with [75Se]selenite, the intracellular distribution of selenoproteins in the liver was investigated in selenium-adequate and selenium-deficient rats. In the subcellular fractions, which were obtained by differential centrifugation, the proteins were separated by means of SDS-PAGE and the selenium compounds were identified via their 75Se activity. In this way twelve selenium-containing proteins or protein subunits with molecular weights between 12,100 and 75,400 were found. Glutathione peroxidase was concentrated in the cytosol and in the mitochondria. With the newly detected selenoproteins, some were enriched in the cytosol, one was mainly found in the nuclear fraction and some, which were present mainly in the mitochondrial and microsomal fractions, are most probably membrane-bound. In the liver of selenium-depleted rats the selenium administered was used predominantly to restore the levels of some of the newly found selenoproteins, while in the liver of selenium-adequate animals most of the selenium retained was incorporated into the glutathione peroxidase. The differences in the distribution among the subcellular fractions and the specific incorporation of the element in selenium deficiency into certain compounds suggest that there are several metabolic pathways for selenium and that the selenoproteins are involved in several different processes of intracellular metabolism.  相似文献   

13.
The metabolic detoxification of selenite and many other selenium compounds involves a series of S-adenosylmethionine-dependent methylations yielding dimethylselenide (DMSe), which is exhaled, and trimethylselenonium ion (TMSe), which is excreted in the urine. This paper shows that periodate-oxidized adenosine (Adox) inhibits these methylation reactions in vivo and increases the toxicity of selenite. When Adox was injected in mice at 100 mumol/kg 30 min before injection of [75Se]selenite at 0.4 mg Se/kg the appearances of [75Se]DMSe in the breath and [75Se]TMSe in the liver were completely inhibited for 90 min. This was mediated by accumulation of S-adenosylhomocysteine, the methyltransferase inhibitor, in the livers of Adox-treated mice due to inhibition of its hydrolase enzyme. During 24 h, Adox-treated mice excreted no detectable urinary [75Se]TMSe and exhaled only 20% as much [75Se]DMSe as controls. The urine of Adox-treated mice also contained S-adenosylhomocysteine at a level (ca. 4 mM), 200 times that of untreated mice, which provided a convenient index of methylation potential in the intact animal. When three groups of three mice each were injected with 100 mumol Adox/kg, selenite at 4 mg Se/kg, or a combination of the two, the mice receiving the combination were dead within 2 days, while the mice in the other two groups all survived at least 4 days. These results verify the enzymatic nature of selenium methylation in vivo, support its importance in detoxification, and indicate the value of Adox in further studies of selenium metabolism.  相似文献   

14.
The aim of this study was to determine liver and kidney concentrations of selenium in wild boars from the northwest part of Poland, depending on season of the year, age, sex, and body weight. Altogether, samples of livers and kidneys from 172 wild boars that were shot in 2005–2008 were investigated. Liver and kidney concentrations of selenium were determined using spectrofluorometric method. In all the animals studied, selenium concentration was several times lower in the liver than in the kidneys. Selenium concentration averaged 0.19 μg/g wet weight (w.w.) in the liver and 1.20 μg/g w.w. in kidneys. The present study showed that season (P ≤ 0.05), age (P ≤ 0.01), and body weight (P ≤ 0.01) have a significant effect on selenium concentration in the liver of wild boars. Liver selenium concentration was the highest in spring (0.23 μg/g w.w.) and the lowest in autumn (0.16 μg/g w.w). Young animals (up to 1 year of age) and those with the lowest body weight (up to 20 kg) were characterized by a slightly lower selenium concentration in the liver compared to older and heavier animals. No significant differences were found in organ selenium concentration between males and females. According to biochemical criteria for the diagnosis of selenium deficiency in pig liver, which were used to evaluate selenium concentration in the liver of wild boars, no individuals were found to have optimal levels. Considering that in Se deficiency higher selenium concentrations are found in kidneys than in the liver, it can be presumed that the wild boars had Se deficiency. However, this is difficult to state conclusively because there are no reference values for this species.  相似文献   

15.
The subcellular distribution of selenium in rat tissues was studied by measuring 75Se in animals provided for 5 months with [75Se]selenite as the main dietary source of selenium. Equilibration of the animals to a constant specific activity allowed the measurement of 75Se to be used as a specific elemental assay for selenium. Of the whole-body selenium, 51% was in the soluble fractions and 48% was bound to the particulate fractions as follows: 21% in plasma membranes, 11% in microsomes, and 16% in mitochondria. Glutathione peroxidase was primarily a soluble enzyme, but part of the activity was associated with plasma membrane in liver, mitochondria in liver and kidney, and microsomes in testes. Selenium in glutathione peroxidase accounted for about one-third of the particulate-associated selenium. These results indicate that other selenium-containing proteins besides glutathione peroxidase are present in membranes.  相似文献   

16.
Deletion of the mouse selenoprotein P gene (Sepp1) lowers selenium concentrations in many tissues. We examined selenium homeostasis in Sepp1(-/-) and Sepp1(+/+) mice to assess the mechanism of this. The liver produces and exports selenoprotein P, which transports selenium to peripheral tissues, and urinary selenium metabolites, which regulate whole-body selenium. At intakes of selenium near the nutritional requirement, Sepp1(-/-) mice had whole-body selenium concentrations 72 to 75% of Sepp1(+/+) mice. Genotype did not affect dietary intake of selenium. Sepp1(-/-) mice excreted in their urine approximately 1.5 times more selenium in relation to their whole-body selenium than did Sepp1(+/+) mice. In addition, Sepp1(-/-) mice gavaged with (75)SeO(2-)(3) excreted 1.7 to 2.4 times as much of the (75)Se in the urine as did Sepp1(+/+) mice. These findings demonstrate that deletion of selenoprotein P raises urinary excretion of selenium. When urinary small-molecule (75)Se was injected intravenously into mice, over 90% of the (75)Se appeared in the urine within 24 h, regardless of selenium status. This shows that urinary selenium is dedicated to excretion and not to utilization by tissues. Our results indicate that deletion of selenoprotein P leads to increased urinary selenium excretion. We propose that the absence of selenoprotein P synthesis in the liver makes more selenium available for urinary metabolite synthesis, increasing loss of selenium from the organism and causing the decrease in whole-body selenium and some of the decreases observed in tissues of Sepp1(-/-) mice.  相似文献   

17.
In order to investigate the selenite metabolism in the anterior pituitary and compare it with other endocrine organs, rats were injected intraperitoneally with75Se sodium selenite (5 mg/kg). The rats were whole body counted shortly after injection and recounted just before sacrifice, which was performed 2, 24, 48 h, and 4, 10, 20, 30, 40, 60, and 80 d after injection. Besides the anterior pituitary, the selenium content was also estimated in the thyroid gland, testis, adrenals, liver, kidney, and blood. The maximum selenium content was observed in all organs 2 h after injection, at which time the anterior pituitary contained 2.9 μg/g wet wt, compared to 13.5 μ/g wet wt in liver and .6 μg/mg wet wt in testis. The excretion of selenite from the anterior pituitary resembled that seen in most other organs investigated, i.e., an initial rapid excretion and a slower secondary phase resembling a first order reaction. Practically all selenium was excreted by 60 d after injection.  相似文献   

18.
The aim of this study was to show the direct effect of selenium on glutathione peroxidase (GSH-Px) activity and GSH/GSSG concentrations in 3- and 6-month-old mice. An ozone-oxygen mixture was used to provoke an oxygen stress. To measure the Se-effect mice were gavaged with sodium selenite. GSH-Px activity and total glutathione concentrations were determined in serum and in the postnuclear fraction of liver and lungs. Additionally glutathione concentrations were determined in whole blood. Both ozone and selenium, administered separately, reduced GSH-Px activity in lungs of 6-month-old animals, while in young mice an opposite effect of Se was observed. Ozone administered jointly with Se did not influence GSH-Px activity in 6-month-old mice, while in young, 3-month-old mice, a stimulatory effect in lungs was observed. There were no significant changes in GSH-Px activity in the liver of 6-month-old mice, but the stimulatory effect occurred in young mice treated with Se and Se & ozone jointly. In young mice, ozone (also ozone with Se) augmented glutathione concentrations. The response to ozone and selenium strictly depended on age and the antagonism between selenium and ozone was observed only in a few cases.  相似文献   

19.
The tissue uptake and distribution of injected [75Se]-sodium selenite as a variance with time and as influenced by dietary selenium status was followed in the tissues of Japanese quails,Coturnix coturnix japonica. Quails maintained on a low selenium semipurified (basal) diet and basal diets supplemented with 0.2 and 2.0 ppm selenium as sodium selenite were injected intraperitonially with75Se as sodium selenite (2.8 microcuries). The injected75Se was monitored in blood, liver, kidney, heart, and testis at 24, 72, and 144 h after injection. Maximal uptake of the injected75Se was observed in tissues of quails maintained on basal diet. The uptake of75Se in tissues in general was determined by the dietary Se status. Among the organs studied, kidney had the maximal level of75Se, 0.2 ppm (μg/g wet tissue) followed by liver, testis, and heart, but testis had the maximal level when the level per milligram of protein was considered, about 3.0 ng/mg protein, followed by liver, kidney, and heart. About 10–20% of the tissue75Se was located in the mitochondria and 50–60% in the post-mitochondrial supernatant fractions in all dietary Se levels. Significant incorporation of75Se in the mitochondrial membrane was observed. The percent distribution ratio between the membrane and matrix fractions of the mitochondria remained constant at all dietary Se levels which, in liver was 65∶35, in kidney 55∶45, and in testis 75∶25. However, in heart mitochondria, the distribution of75Se between membrane and matrix varied with dietary Se status, the ratio being 82∶18 in the basal group, and 72∶28 and 41∶59 in the 0.2 and 2.0 ppm Se-supplemented groups, respectively. This is indicative of a preferential uptake of75Se in the mitochondrial membrane in conditions of deficiency. About 40–60% of the mitochondrial membrane-associated75Se was released upon Triton treatment in all the organs. Of the membrane-bound75Se, about 10–15% was acid-labile in liver and kidney and 25% in the heart tissue. Possibilities of tissue specific roles, especially in the heart mitochondrial membrane-related processes, are indicated for selenium.  相似文献   

20.
The metabolism of selenium (Se) in the bloodstream of rats was studied using HPLC–ICP-MS with an enriched Se stable isotope, and the results were used as Se-specific indicators for Se nutritional status. Concentration of endogenous Se in plasma depended on dietary Se, while changes in concentrations and distributions of exogenous Se revealed its metabolic pathway. Namely, selenite was taken up by red blood cells and reduced to selenide, and then reappeared in plasma in a form bound selectively to albumin within 10 min, disappeared from plasma again within 30 min after injection. Then, the concentration of labelled Se started to increase slowly as selenoprotein P and extracellular glutathione peroxidase, and attained a maximum level at about 6 h after injection. The isotope ratio of endogenous to exogenous Se concentrations in plasma after 48 h post-injection was proposed to represent the Se-specific indicator in plasma reflecting the nutritional status of Se.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号