首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were performed to investigate the involvement of the cell membrane in the excision DNA repair process in Escherichia coli. Two membrane-binding drugs, procaine and phenethyl alcohol (PEA), inhibited liquid-holding recovery (LHR) in u.v.-irradiated E. coli wild-type and recA strains. In uvrB and polA strains where, after u.v.-irradiation, LHR was absent the two drugs had no effect. Both drugs markedly reduced the removal of u.v.-induced thymine dimers in the DNA of wild-type cells (H/r30). Analysis by alkaline sucrose gradients revealed that PEA inhibited the incision step in excision repair. In contrast, procaine had no effect on incision but apparently inhibited the late steps in excision repair. PEA dissociated DNA from the cell membrane, whereas procaine did not. The results suggest that the two drugs PEA and procaine inhibit LHR and the excision repair process operating on u.v.-induced damage in E. coli by at least two different mechanisms each of which may involve the cell membrane.  相似文献   

2.
The survival of u.v.-irradiated human cytomegalovirus (HCMV) on u.v.-irradiated human IAFP-1 cells was increased over that on unirradiated cells. Irradiated virus had a higher forward mutation frequency towards temperature sensitivity in irradiated than in unirradiated cells. Enhanced reactivation of u.v.-irradiated HCMV is thus mutagenic in normal human cells. This observation supports the possible induction of an error-prone mode of DNA repair in u.v.-irradiated mammalian cells.  相似文献   

3.
A radioautographic examination of nuclear DNA synthesis in unirradiated and u.v.-irradiated HeLa cells, in the presence and in the absence of aphidicolin, showed that aphidicolin inhibits nuclear DNA replication and has no detectable effect on DNA repair synthesis. Although the results establish that in u.v.-irradiated HeLa cells most of the DNA repair synthesis is not due to DNA polymerase alpha, they do not preclude a significant role for this enzyme in DNA repair processes.  相似文献   

4.
The conjugally acquired deoxyribonucleic acid (DNA) of small, anucleate cells ("minicells") of a mutant strain of Escherichia coli K-12 was found to be predominantly associated with the bacterial membrane. Evidence from X-irradiation studies in vivo shows that there is no decrease in DNA-membrane association under conditions which reduce the DNA to one-sixth its original size and suggests the possibility of multiple DNA-membrane association sites. Preliminary enzymatic studies indicate the involvement of protein, DNA, and lipids in the membrane association of the DNA.  相似文献   

5.
Bacteriophage C5 of Pseudomonas aeruginosa is able to reactivate ultraviolet (u.v.)-irradiated phage E79 in coinfection experiments and decrease the u.v.-sensitivity of a host-cell reactivation deficient mutant. These properties suggest that phage C5 has a gene(s) which is involved in the repair of u.v.-damaged DNA. The isolation of two u.v.-sensitive mutants of C5 supports this hypothesis.  相似文献   

6.
Using 2H- and 31P-NMR techniques the effects of temperature variation and phenethyl alcohol addition were investigated on lipid acyl chain order and on the macroscopic lipid organization of membrane systems derived from cells of the Escherichia coli fatty acid auxotrophic strain K1059, which was grown in the presence of [11,11-2H2]oleic acid. Membranes of intact cells showed a gel to liquid-crystalline phase transition in the range of 4-20 degrees C, which was similar to that observed for the total lipid extract and for the dominant lipid species phosphatidylethanolamine (PE). Phosphatidylglycerol (PG) remained in a fluid bilayer throughout the whole temperature range (4-70 degrees C). At 30 degrees C acyl chain order was highest in PE, followed by the total lipid extract, PG, intact cells, and isolated inner membrane vesicles. Acyl chain order in E. coli PE and PG was much higher than in the corresponding dioleoylphospholipids. E. coli PE was found to maintain a bilayer organization up to about 60 degrees C, whereas in the total lipid extract as well as in intact E. coli cells bilayer destabilization occurred already at about 42 degrees C. It is proposed that the regulation of temperature at which the bilayer-to-non-bilayer transition occurs may be important for membrane functioning in E. coli. Addition of phenethyl alcohol did not affect the macroscopic lipid organization in E. coli cells or in the total lipid extract, but caused a large reduction in chain order of about 70% at 1 mol% of the alcohol in both membrane systems. It is concluded that while both increasing temperature and addition of phenethyl alcohol can affect membrane integrity, in the former case this is due to the induction of non-bilayer lipid structures, whereas in the latter case this is caused by an increase in membrane fluidity.  相似文献   

7.
We have used the eukaryotic DNA polymerase alpha inhibitor, aphidicolin, and the polymerase beta inhibitor, dideoxythymidine, to examine the role of these enzymes in excision repair of ultraviolet (u.v., 254 nm) damage induced in non-dividing (arrested) human skin fibroblasts. The effects of these drugs on u.v.-treated cells have been monitored using a simple and reproducible repair synthesis assay in parallel with viability measurements to determine the degree of inhibition of repair of potentially lethal damage. In agreement with previous studies using density gradients, repair synthesis induced by low fluences of u.v. (less than 3 J m-2) is relatively insensitive to inhibition by aphidicolin compared to high fluences where approximately 85 per cent inhibition is observed at the highest (20 micrograms/ml) aphidicolin concentration employed. However, repair of potentially lethal damage is inhibited by at least 90 per cent over the entire fluence range. Although dideoxythymidine led to considerable inhibition of repair synthesis, the result is probably an artifact under these in vivo conditions. The polymerase beta inhibitor was not toxic to u.v.-treated cells nor did it add to the toxicity of aphidicolin when the drugs were used in combination. We conclude that if the beta polymerase is involved in excision repair then its temporary (4 h) inhibition by dideoxythymidine is entirely reversible. In contrast, polymerase alpha appears to be an enzyme essential to the majority of biologically effective excision repair over the entire u.v. fluence range tested.  相似文献   

8.
U.v. radiation is directly mutagenic for the single-stranded DNA parvovirus H-1 propagated in human cells. Mutation induction in the progeny of u.v.-irradiated virus increased linearly with the dose and could be ascribed neither to an increased number of rounds of viral replication nor to the indirect activation of an inducible cellular mutator activity by the u.v.-damaged virus. The level of mutagenesis among the descendants of both unirradiated and u.v.-damaged H-1 was enhanced if the host cells had been exposed to sublethal doses of u.v. light before infection. This indirect enhancement of viral mutagenesis in pre-irradiated cells was maximal at multiplicities lower than 0.2 infectious particles/cell. The frequency of mutations resulting from cell pre-irradiation was only slightly higher for u.v.-irradiated than for intact virus. Thus, the induced cellular mutator appeared to be mostly untargeted in the dose range given to the virus. U.v.-irradiation of the cells also enhanced the mutagenesis of u.v.-irradiated herpes simplex virus, a double-stranded DNA virus ( Lytle and Knott , 1982).  相似文献   

9.
Nucleotide excision repair in Escherichia coli.   总被引:43,自引:0,他引:43       下载免费PDF全文
  相似文献   

10.
After infection of Escherichia coli with bacteriophage T7, the parenteral DNA forms a stable association with host cell membranes. The DNA-membrane complex isolated in cesium chloride gradients is free of host DNA and the bulk of T7 RNA. The complex purified through two cesium chloride gradients contains a reproducible set of proteins which are enriched in polypeptides having molecular weights of 54,000, 34,000, and 32,000. All proteins present in the complex are derived from host membranes. Treatment of the complex with Bruij-58 removes 95% of the membrane lipid and selectively releases certain protein components. The Brij-treated complex has an S value of about 1,000 and the sedimentation rate of this material is not altered by treatment with Pronase or RNase.  相似文献   

11.
Growth of Escherichia coli 1829 ColV, I-K94 at pH 5.0 led to an increase in u.v. resistance compared with cells grown at pH 7.0. This was due to a phenotypic change, since organisms grown at pH 7.0 showed increased resistance after only 2.5–5.0 min incubation at the mildly acid pH. Other E. coli K12 derivatives became more u.v.-resistant at pH 5.0 including uvrA, recA and polA1 mutants. Organisms grown at pH 5.0 also showed increased Weigle reactivation of u.v.-irradiated Λ phage and this applied to the repair-deficient mutants as well as the parent strains. Both the increased u.v. resistance of acid-habituated cells and their increased ability to bring about Weigle reactivation appear to involve RecA-independent processes and are presumably, therefore, independent of the SOS response.  相似文献   

12.
The RecA protein of Escherichia coli is required for SOS-induced mutagenesis in addition to its recombinational and regulatory roles. We have suggested that RecA might participate directly in targeted mutagenesis by binding preferentially to the site of the DNA damage (e.g. pyrimidine dimer) because of its partially unwound nature; DNA polymerase III will then encounter RecA-coated DNA at the lesion and might replicate across the damaged site more often but with reduced fidelity. In support of this proposal, we have found that the phenotype of wild-type and mutant RecA for mutagenesis correlates with capacity to bind to double-stranded DNA. Wild-type RecA binds more efficiently to ultraviolet (u.v.)-irradiated, duplex DNA than to non-irradiated DNA. The RecA441 (Tif) protein that is constitutive for mutagenesis binds extremely well to double-stranded DNA with no lesions, whereas the RecA430 protein that is defective in mutagenesis binds poorly even to u.v.-irradiated DNA. The RecA phenotype also correlates with capacity to use duplex DNA as a cofactor for cleavage of the LexA repressor protein for SOS-controlled operons. Wild-type RecA provides efficient cleavage of LexA only with u.v.-irradiated duplex DNA; RecA441 cleaves well with non-irradiated DNA; RecA430 gives very poor cleavage even with u.v.-irradiated DNA. We conclude that the interaction of RecA with damaged double-stranded DNA is likely to be a critical component of SOS mutagenesis and to define a pathway for the LexA cleavage reaction as well.  相似文献   

13.
Extracts of E. coli polAexl which contains a temperature sensitive 5′→3′ exonuclease function of polymerase I accomplish the selective excision of products of the 5,6-dihydroxy-dihydrothymine type from γ-irradiated DNA and OsO4-oxidized polyd(A-T) at the permissive temperature (30°) but not at the nonpermissive temperature (42°). The 5′→3′ exonuclease activity of polymerase I, therefore, acts as a repair exonuclease in γ-ray excision repair.  相似文献   

14.
The influence of UV-light on DNA-membrane complex (DMC) of Bacillus subtilis was studied. An increased DNA content in DMC for strains 168 and rec A-, and a degradation of DMC for strain polA- have been registrated. The increase in DNA in DMC of the two former strains is inhibited by caffeine to be correlated with changes in protein content in DMC, determined by a radioactive label, but not with lipid content. Thus, the association of DNA with the membrane is mediated by proteins. DNA increasing capacity seen in DMC after UV-irradiation and after the following incubation of bacteria in the complete medium is correlated with a relative sensitivity of strains. To explain these data, it is supposed that the reparative synthesis is accomplished in cell on their membranes and that for the normal completion of DNA repair the association between DNA and the membrane is necessary.  相似文献   

15.
A number of physical and chemical agents in the environment have been studied for their ability to induce or alter DNA repair mechanisms in human cells. We have investigated the effects of 60 Hz, 1000 V/cm electric fields on DNA repair in normal human fibroblasts in vitro. An examination was done on the ability of electric fields suspected to cause damage which could be repaired by thymine dimer excision and measurable by the bromodeoxyuridine photolysis assay. The thymine dimer assay with enzyme-sensitive site analysis was used to measure the cells' capacity for removing ultraviolet light (u.v.)-induced pyrimidine dimers; during exposure to electric field 24 hr before u.v. irradiation; 24 hr after u.v. irradiation; and up to 48 hr continuously after u.v. irradiation. Cell growth and cell survival following electric field exposure were also studied. Within the limits of these experiments, it was found that exposure to such electric fields did not alter cell growth or survival, and no DNA repair or alteration in DNA excision repair capacity was observed as compared with unexposed control cultures.  相似文献   

16.
Induction of alkaline phosphatase, an enzyme located in the periplasmic region of Escherichia coli, was inhibited by phenethyl alcohol, an agent believed to alter the cell membrane structure. Studies to elucidate mechanism of this inhibition showed that while phenethyl alcohol arrested the incorporation of [3H]leucine into active alkaline phosphatase, it did allow substantial incorporation of the label into inactive monomer subunits of the enzyme. These results suggest that phenethyl alcohol may not interfere with the de novo synthesis of monomer subunits of the enzyme but arrest conversion of these into active dimer enzyme presumably by its primary action on the cell membrane structure.  相似文献   

17.
Experiments were performed to examine the role of cyclobutyl pyrimidine dimers in the process of mutagenesis by ultraviolet (u.v.) light. Lambda phage DNA was irradiated with u.v. and then incubated with an Escherichia coli photoreactivating enzyme, which monomerizes cyclobutyl pyrimidine dimers upon exposure to visible light. The photoreactivated DNA was packaged into lambda phage particles, which were used to infect E. coli uvr- host cells that had been induced for SOS functions by ultraviolet irradiation. Photoreactivation removed most toxic lesions from irradiated phage, but did not change the frequency of induction of mutations to the clear-plaque phenotype. This implies that cyclobutyl pyrimidine dimers can be lethal, but usually do not serve as sites of mutations in the phage. The DNA sequences of mutants derived from photoreactivated DNA showed that almost two-thirds (16/28) were transitions, the same fraction found for u.v. mutagenesis without photoreactivation. These results show that in this system, the lesion inducing transitions (the major type of u.v.-induced mutation) is not the cyclobutyl pyrimidine dimer; a strong candidate for a mutagenic lesion is the Pyr(6-4)Pyo photoproduct. On the other hand, photoreactivation of SOS-induced host cells before infection with u.v.-irradiated phage reduced mutagenesis substantially. In this case, photoreversal of cyclobutyl dimers serves to reduce expression of the SOS functions that are required in the process of targeted u.v. mutagenesis.  相似文献   

18.
Chieko Wada  Takashi Yura 《Genetics》1974,77(2):199-220
A temperature-sensitive DNA replication mutant of E. coli K-12 was isolated among the mutants selected for phenethyl alcohol resistance at low temperatures. This mutation, designated as dnaP18, affects sensitivity of the cell to phenethyl alcohol, sodium deoxycholate and rifampicin, presumably due to an alteration in the membrane structure. At high temperatures (e.g., 42 degrees ), synthesis of DNA, but not RNA or protein, is arrested, leading to the formation of "filaments" in which no septum formation is apparent. Nucleoids observed under electron microscope seem to become dispersed and DNA fibrils less condensed, which may explain the loss of viability under these conditions. Genetic analyses, including reversion studies, indicate that a recessive dnaP mutation located between cya and metE on the chromosome is responsible for both alterations of the membrane properties and temperature sensitivity. The dnaP18 mutation does not affect growth of phage T4 or lambda under conditions where host DNA replication is completely inhibited. Kinetic studies of DNA replication and cell division in this mutant after the temperature shift from 30 to 42 degrees , and during the subsequent recovery at 30 degrees , accumulated evidence suggesting that DNA replication comes to a halt at 42 degrees upon completion of a cycle already initiated before the temperature shift. Since the recovery of DNA synthesis after exposure to 42 degrees does not depend on protein or RNA synthesis or other energy-requiring processes, the product of the mutant dnaP gene appears to be reversibly inactivated at 42 degrees . Taken together with the recessive nature of the present mutation, it was suggested that one of the membrane proteins involved in initiation of DNA replication is affected in this mutant.  相似文献   

19.
Involvement of bacteriophage T4 genes in radiation repair   总被引:9,自引:0,他引:9  
One interpretation of Ebisuzaki's (1966) observation that the functional survival of certain early phage T4 genes is identical in v+ and v -infected cells is that the product of the early gene being studied is essential for the successful completion of excision repair (which is known to be mediated by the v gene). An experiment designed to test this hypothesis is described, with results which fully support the idea. Assuming then that this interpretation is valid, it became possible to determine the involvement in excision repair of a much wider range of early genes by establishing whether or not the v allele affects their functional survival. In addition a comparable series of experiments was performed with phages carrying the u.v.-sensitive y mutation which is known to mediate a quite different type of repair in T4-infected cells.The results indicate that genes 1, 30, 42, 43 and 56 are involved in excision repair, but not genes 32, 41, 43 or 44. All these genes are however involved in y-mediated repair. It appears therefore that this latter repair system (which bears some resemblance to that controlled by the rec genes in bacteria) depends on normal phage DNA synthesis for its completion. However the repair synthesis following the excision of pyrimidine dimers in u.v.-irradiated T4 DNA seems distinct from normal DNA synthesis in that it does not involve certain of the early phage genes, and in particular does not utilize the DNA polymerase coded by gene 43. It is suggested that the polymerase activity associated with this repair synthesis is provided by the bacterial Kornberg polymerase pol I.  相似文献   

20.
Studying the replication of NR1 plasmid in E. coli mini-cells it was shown that the character of bond between plasmid DNA and membrane depends on the stage of replication cycle of the plasmid. On initiation the DNA-membrane complex is sensitive to the action of ionic force. In the process of elongation the bond of DNA molecules with the membrane is unstable if exists at all, and can be broken even by the nonionic detergent. At the final stage of replication the newly synthesized molecules form a complex with the membrane structures which is unstable in the presence of 0,5 M NaCl. The destruction of the complex followed by the open cycle of plasmid DNA coming out of it takes place under the action of ionic detergent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号