首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
During early pregnancy in the rat, focal adhesions disassemble in uterine luminal epithelial cells at the time of implantation to facilitate their removal so that the implanting blastocyst can invade into the underlying endometrial decidual cells. This study investigated the effect of ovarian hormones on the distribution and protein expression of two focal adhesion proteins, talin and paxillin, in rat uterine luminal and glandular epithelial cells under various hormone regimes. Talin and paxillin showed a major distributional change between different hormone regimes. Talin and paxillin were highly concentrated along the basal cell surface of uterine luminal epithelial cells in response to oestrogen treatment. However, this prominent staining of talin and paxillin was absent and also a corresponding reduction of paxillin expression was demonstrated in response to progesterone alone or progesterone in combination with oestrogen, which is also observed at the time of implantation. In contrast, the distribution of talin and paxillin in uterine glandular epithelial cells was localised on the basal cell surface and remained unchanged in all hormone regimes. Thus, not all focal adhesions are hormonally dependent in the rat uterus; however, the dynamics of focal adhesion in uterine luminal epithelial cells is tightly regulated by ovarian hormones. In particular, focal adhesion disassembly in uterine luminal epithelial cells, a key component to establish successful implantation, is predominantly under the influence of progesterone.  相似文献   

2.
The first prototype of the protease activated receptor (PAR) family, the thrombin receptor PAR1, plays a central role both in the malignant invasion process of breast carcinoma metastasis and in the physiological process of placental implantation. The molecular mechanism underlying PAR1 involvement in tumor invasion and metastasis, however, is poorly defined. Here we show that PAR1 increases the invasive properties of tumor cells primarily by increased adhesion to extracellular matrix components. This preferential adhesion is accompanied by the cytoskeletal reorganization of F-actin toward migration-favoring morphology as detected by phalloidin staining. Activation of PAR1 increased the phosphorylation of focal adhesion kinase and paxillin, and the induced formation of focal contact complexes. PAR1 activation affected integrin cell-surface distribution without altering their level of expression. The specific recruitment of alpha(v)beta(5) to focal contact sites, but not of alpha(v)beta(3) or alpha(5)beta(1), was observed by immunofluorescent microscopy. PAR1 overexpressing cells showed selective reciprocal co-precipitation with alpha(v)beta(5) and paxillin but not with alpha(v)beta(3) that remained evenly distributed under these conditions. This co-immunoprecipitation failed to occur in cells containing the truncated form of PAR1 that lacked the entire cytoplasmic portion of the receptor. Thus, the PAR1 cytoplasmic tail is essential for conveying the cross-talk and recruiting the alpha(v)beta(5) integrin. While PAR1 overexpressing cells were invasive in vitro, as reflected by their migration through a Matrigel barrier, invasion was further enhanced by ligand activation of PAR1. Moreover, the application of anti-alpha(v)beta(5) antibodies specifically attenuated this PAR1 induced invasion. We propose that the activation of PAR1 may lead to a novel cooperation with the alpha(v)beta(5) integrin that supports tumor cell invasion.  相似文献   

3.
Individual metastatic tumor cells exhibit two interconvertible modes of cell motility during tissue invasion that are classified as either mesenchymal or amoeboid. The molecular mechanisms by which invasive breast cancer cells regulate this migratory plasticity have yet to be fully elucidated. Herein we show that the focal adhesion adaptor protein, paxillin , and the closely related Hic-5 have distinct and unique roles in the regulation of breast cancer cell lung metastasis by modulating cell morphology and cell invasion through three-dimensional extracellular matrices (3D ECMs). Cells depleted of paxillin by RNA interference displayed a highly elongated mesenchymal morphology, whereas Hic-5 knockdown induced an amoeboid phenotype with both cell populations exhibiting reduced plasticity, migration persistence, and velocity through 3D ECM environments. In evaluating associated signaling pathways, we determined that Rac1 activity was increased in cells devoid of paxillin whereas Hic-5 silencing resulted in elevated RhoA activity and associated Rho kinase–induced nonmuscle myosin II activity. Hic-5 was essential for adhesion formation in 3D ECMs, and analysis of adhesion dynamics and lifetime identified paxillin as a key regulator of 3D adhesion assembly, stabilization, and disassembly.  相似文献   

4.
Aromatase (product of CYP19 gene), the critical enzyme in estrogen biosynthesis, is up-regulated in 70% of all breast cancers and is highly correlated with cyclooxygenase 2 (COX-2), the rate-determining enzyme in prostanoid biosynthesis. Expression of COX-2 also is correlated with the oncogene HER-2/neu. The efficacy of current endocrine therapies for breast cancer is predicted only if the tumor contains significant amounts of estrogen receptor. Because the progesterone receptor (PR) is an estrogen-induced target gene, it has been suggested that its presence may serve as an indicator of estrogen receptor functional capacity and the differentiation state of the tumor. In the present study, we tested the hypothesis that PR serves a crucial protective role by antagonizing inflammatory response pathways in the breast. We observed that progesterone antagonized the stimulatory effects of cAMP and IL-1beta on aromatase, COX-2, and HER-2/neu expression in T47D breast cancer cells. These actions of progesterone were associated with increased expression of the nuclear factor-kappaB inhibitor, IkappaBalpha. In 28 breast cancer cell lines, IkappaBalpha expression was positively correlated with PR mRNA levels; overexpression of a phosphorylation-defective mutant of IkappaBalpha inhibited expression of aromatase, COX-2, and HER-2/neu. Moreover, in breast cancer cell lines cultured in the absence of progesterone, up-regulation of endogenous PR caused decreased expression of aromatase, COX-2, and HER-2/neu expression, whereas down-regulation of endogenous PR resulted in a marked induction of aromatase and HER-2/neu mRNA. Collectively, these findings suggest that PR plays an important antiinflammatory role in breast cancer cells via ligand-dependent and ligand-independent mechanisms.  相似文献   

5.
《The Journal of cell biology》1996,134(5):1323-1332
Integrins alpha v beta 3 and alpha v beta 5 both mediate cell adhesion to vitronectin yet trigger different postligand binding events. Integrin alpha v beta 3 is able to induce cell spreading, migration, angiogenesis, and tumor metastasis without additional stimulators, whereas alpha v beta 5 requires exogenous activation of protein kinase C (PKC) to mediate these processes. To investigate this difference, the ability of beta 3 or beta 5 to induce colocalization of intracellular proteins was assessed by immunofluorescence in hamster CS-1 melanoma cells. We found that alpha v beta 5 induced colocalization of talin, alpha-actinin, tensin, and actin very weakly relative to alpha v beta 3. alpha v beta 5 was able to efficiently induce colocalization of focal adhesion kinase (FAK); however, it was unable to increase phosphorylation of FAK on tyrosine. Activation of PKC by adding phorbol ester to alpha v beta 5-expressing cells induced spreading, increased colocalization of alpha-actinin, tensin, vinculin, p130cas and actin, and triggered tyrosine phosphorylation of FAK. Unexpectedly, talin colocalization remained low even after activation of PKC. Treatment of cells with the PKC inhibitor calphostin C inhibited spreading and the colocalization of talin, alpha-actinin, tensin, and actin for both alpha v beta 3 and alpha v beta 5. We conclude that PKC regulates localization of cytoskeletal proteins and phosphorylation of FAK induced by alpha v beta 5. Our results also show that FAK can be localized independent of its phosphorylation and that cells can spread and induce localization of other focal adhesion proteins in the absence of detectable talin.  相似文献   

6.
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.  相似文献   

7.
Integrins are the major family of cell adhesion receptors that mediate cell adhesion to the extracellular matrix (ECM). Integrin-mediated adhesion and signaling play essential roles in neural development. In this study, we have used echistatin, an RGD-containing short monomeric disintegrin, to investigate the role of integrin-mediated adhesion and signaling during retinal development in Xenopus. Application of echistatin to Xenopus retinal-derived XR1 glial cells inhibited the three stages of integrin-mediated adhesion: cell attachment, cell spreading, and formation of focal adhesions and stress fibers. XR1 cell attachment and spreading increased tyrosine phosphorylation of paxillin, a focal adhesion associated protein, while echistatin significantly decreased phosphorylation levels of paxillin. Application of echistatin or beta(1) integrin function blocking antibody to the embryonic Xenopus retina disrupted retinal lamination and produced rosette structures with ectopic photoreceptors in the outer retina. These results indicate that integrin-mediated cell-ECM interactions play a critical role in cell adhesion, migration, and morphogenesis during vertebrate retinal development.  相似文献   

8.
In this study, we examined the effects of shark cartilage extract on the attachment and spreading properties and the focal adhesion structure of cultured bovine pulmonary artery endothelial cells. Treatment with cartilage extract resulted in cell detachment from the substratum. Immunofluorescence staining of those treated cells that remained attached showed that, instead of being present in both central and peripheral focal adhesions as in control cells, both integrin alpha(v)beta(3) and vinculin were found only in peripheral focal adhesion and thinner actin filament bundles were seen. In addition to causing cell detachment, cartilage extract partially inhibited the initial adherence of the cells to the substratum in a dose-dependent manner. Integrin alpha(v)beta(3) and vinculin staining of these cells also showed a peripheral focal adhesion distribution pattern. Vitronectin induced cell spreading in the absence of serum, but was blocked by simultaneous incubation with cartilage extract, which was shown to inhibit both integrin alpha(v)beta(3) and vinculin recruitment to focal adhesion and the formation of stress fibers. Dot binding assays showed that these inhibitory effects on cell attachment and spreading were not due to direct binding of cartilage extract components to integrin alpha(v)beta(3) or vitronectin. Shark cartilage chondroitin sulfate had no inhibitory effect on either cell attachment or spreading of endothelial cells. These results show that the inhibitory effects of cartilage extract on cell attachment and spreading are mediated by modification of the organization of focal adhesion proteins.  相似文献   

9.
Focal adhesion (FA) formation is induced by extracellular matrix-stimulated integrin clustering and activation of receptors for diffusible factors. Leupaxin (LPXN) is a member of the paxillin family of FA proteins expressed in many cancer cell lines. We found activation of gastrin-releasing peptide receptor (GRPr) by bombesin (BN) stimulated LPXN translocation from cytoplasm to FAs. Using mutagenesis, we identified LIM3 as the primary FA targeting domain for LPXN and showed BN-induced LPXN tyrosine phosphorylation on residues 22, 62 and 72. A LIM3 point mutant of LPXN failed to target to FAs and had no BN-stimulated tyrosine phosphorylation. Conversely, a non-phosphorylatable mutant (Y22/62/72F) translocated to FAs after BN addition. Stimulation of FA formation using vinblastine also induced LPXN translocation and tyrosine phosphorylation. Therefore, dynamic LPXN tyrosine phosphorylation requires translocation to FAs. LPXN and paxillin had opposite roles in adhesion to collagen I (CNI) in MDA-MB-231 breast cancer cells. LPXN siRNA stimulated whereas paxillin siRNA inhibited cell adhesion. Knockdown of both LPXN and paxillin behaved similarly to paxillin knockdown alone, suggesting LPXN''s function in adhesion might depend on paxillin. Additionally, LPXN regulated cell spreading on CNI but not on fibronectin whereas paxillin knockdown suppressed spreading on both substrates. These results demonstrate that although LPXN and paxillin''s FA targeting and tyrosine phosphorylation are similar, each protein has distinct functions.Key words: focal adhesion, tyrosine phosphorylation, bombesin, adhesion, spreading  相似文献   

10.
Integrin-mediated adhesion to the extracellular matrix plays a fundamental role in tumor metastasis. Salvicine, a novel diterpenoid quinone compound identified as a nonintercalative topoisomerase II poison, possesses a broad range of antitumor and antimetastatic activity. Here, the mechanism underlying the antimetastatic capacity of salvicine was investigated by exploring the effect of salvicine on integrin-mediated cell adhesion. Salvicine inhibited the adhesion of human breast cancer MDA-MB-435 cells to fibronectin and collagen without affecting nonspecific adhesion to poly-l-lysine. The fibronectin-dependent formation of focal adhesions and actin stress fibers was also inhibited by salvicine, leading to a rounded cell morphology. Furthermore, salvicine down-regulated beta(1) integrin ligand affinity, clustering and signaling via dephosphorylation of focal adhesion kinase and paxillin. Conversely, salvicine induced extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. The effect of salvicine on beta(1) integrin function and cell adhesion was reversed by U0126 and SB203580, inhibitors of MAPK/ERK kinase 1/2 and p38 MAPK, respectively. Salvicine also induced the production of reactive oxygen species (ROS) that was reversed by ROS scavenger N-acetyl-l-cysteine. N-acetyl-l-cysteine additionally reversed the salvicine-induced activation of ERK and p38 MAPK, thereby maintaining functional beta(1) integrin activity and restoring cell adhesion and spreading. Together, this study reveals that salvicine activates ERK and p38 MAPK by triggering the generation of ROS, which in turn inhibits beta(1) integrin ligand affinity. These findings contribute to a better understanding of the antimetastatic activity of salvicine and shed new light on the complex roles of ROS and downstream signaling molecules, particularly p38 MAPK, in the regulation of integrin function and cell adhesion.  相似文献   

11.
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.  相似文献   

12.
Zhang PJ  Zhao J  Li HY  Man JH  He K  Zhou T  Pan X  Li AL  Gong WL  Jin BF  Xia Q  Yu M  Shen BF  Zhang XM 《The EMBO journal》2007,26(7):1831-1842
Accumulated evidence indicates that progesterone receptors (PR) are involved in proliferation of breast cancer cells and are implicated in the development of breast cancer. In this paper, a yeast two-hybrid screen for PR led to the identification of CUE domain containing 2 (CUEDC2), whose function is unknown. Our results demonstrate that CUEDC2 interacts with PR and promotes progesterone-induced PR degradation by the ubiquitin-proteasome pathway. The inhibition of endogenous CUEDC2 by siRNA nearly abrogated the progesterone-induced degradation of PR, suggesting that CUEDC2 is involved in progesterone-induced PR ubiquitination and degradation. Moreover, we identify the sumoylation site Lys-388 of PR as the target of CUEDC2-promoted ubiquitination. CUEDC2 decreases the sumoylation while promoting ubiquitination on Lys-388 of PRB. We also show that CUEDC2 represses PR transactivation, inhibits the ability of PR to stimulate rapid MAPK activity, and impairs the effect of progesterone on breast cancer cell growth. Therefore, our results identify a key post-translational mechanism that controls PR protein levels and for the first time provide an important insight into the function of CUEDC2 in breast cancer proliferation.  相似文献   

13.
Hepatocyte growth factor (HGF) modulates cell adhesion, migration, and branching morphogenesis in cultured epithelial cells, events that require regulation of cell-matrix interactions. Using mIMCD-3 epithelial cells, we studied the effect of HGF on the focal adhesion proteins, focal adhesion kinase (FAK) and paxillin and their association. HGF was found to increase the tyrosine phosphorylation of paxillin and to a lesser degree FAK. In addition, HGF induced association of paxillin and activated ERK, correlating with a gel retardation of paxillin that was prevented with the ERK inhibitor U0126. The ability of activated ERK to phosphorylate and induce gel retardation of paxillin was confirmed in vitro in both full-length and amino-terminal paxillin. Several potential ERK phosphorylation sites in paxillin flank the paxillin-FAK association domains, so the ability of HGF to regulate paxillin-FAK association was examined. HGF induced an increase in paxillin-FAK association that was inhibited by pretreatment with U0126 and reproduced by in vitro phosphorylation of paxillin with ERK. The prevention of the FAK-paxillin association with U0126 correlated with an inhibition of the HGF-mediated FAK tyrosine phosphorylation and inhibition of HGF-dependent cell spreading and adhesion. An examination of cellular localization of FAK and paxillin demonstrated that HGF caused a condensation of focal adhesion complexes at the leading edges of cell processes and FAK-paxillin co-localization in these large complexes. Thus, these data suggest that HGF can induce serine/threonine phosphorylation of paxillin most probably mediated directly by ERK, resulting in the recruitment and activation of FAK and subsequent enhancement of cell spreading and adhesion.  相似文献   

14.
Both epidermal growth factor (EGF) and the extracellular matrix components have been implicated in the pathobiology of adenocarcinomas by somewhat poorly understood mechanisms. We have addressed this problem using an in vitro model comprising the colon adenocarcinoma cell line HT29-D4, wherein the role of EGF and type IV collagen on cell adhesion was examined. We demonstrated that the effect of EGF on HT29-D4 cell adhesion was regulated by type IV collagen in a time- and dose-dependent manner. The incorporation of a panel of monoclonal antibodies to integrins alpha1beta1, alpha2beta1 and alpha3beta1 in adhesion medium revealed that EGF-mediated increase in the cell adhesion was mediated essentially by alpha2beta1, and the use of flow cytometry led us to conclude that this EGF effect was mediated by an increase in alpha2beta1 activation and not by an increase in cell surface expression of integrin. An indirect immunofluorescence technique was employed to demonstrate that focal adhesion kinase (FAK) and alpha2beta1 integrin were present in focal complexes in large EGF-induced lamellipodia whereas actin cytoskeleton was organised in small tips that colocalised with FAK. This pattern was observed at early time points (15 min) with a strong FAK tyrosine phosphorylation and with an increase in mitogen-activated protein kinase activity (5-15 min) as measured by immunoprecipitation and immunoblotting. We conclude that at early time points of cell adhesion and spreading, EGF exerted an inside-out regulation of alpha2beta1 integrin in HT29-D4 cells. This regulation seemed to be mediated by EGF-dependent FAK phosphorylation entailing an increase in integrin activation and their recruitment in numerous focal complexes. Furthermore after activation, FAK induced aggregation of actin-associated proteins (paxillin, vinculin and other tyrosine phosphorylated proteins) in focal complexes, leading to organisation of actin cytoskeleton that is involved in lamellipodia formation. Finally, activated alpha2beta1 integrins intervened in all these processes clustered in small focal complexes but not in focal adhesions.  相似文献   

15.
Integrin-regulated FAK-Src signaling in normal and cancer cells   总被引:20,自引:0,他引:20  
Integrins can alter cellular behavior through the recruitment and activation of signaling proteins such as non-receptor tyrosine kinases including focal adhesion kinase (FAK) and c-Src that form a dual kinase complex. The FAK-Src complex binds to and can phosphorylate various adaptor proteins such as p130Cas and paxillin. In normal cells, multiple integrin-regulated linkages exist to activate FAK or Src. Activated FAK-Src functions to promote cell motility, cell cycle progression and cell survival. Recent studies have found that the FAK-Src complex is activated in many tumor cells and generates signals leading to tumor growth and metastasis. As both FAK and Src catalytic activities are important in promoting VEGF-associated tumor angiogenesis and protease-associated tumor metastasis, support is growing that FAK and Src may be therapeutically relevant targets in the inhibition of tumor progression.  相似文献   

16.
Superficial wounds in the gastrointestinal tract rapidly reseal by coordinated epithelial cell migration facilitated by cytokines such as hepatocyte growth factor (HGF)/scatter factor released in the wound vicinity. However, the mechanisms by which HGF promotes physiological and pathophysiologic epithelial migration are incompletely understood. Using in vitro models of polarized T84 and Caco-2 intestinal epithelia, we report that HGF promoted epithelial spreading and RhoA GTPase activation in a time-dependent manner. Inducible expression of enhanced green fluorescent protein-tagged dominant-negative RhoA significantly attenuated HGF-induced spreading. HGF expanded a zone of partially flattened cells behind the wound edge containing basal F-actin fibers aligned in the direction of spreading. Concomitantly, plaques positive for the focal adhesion protein paxillin were enhanced. HGF induced an increase in the translation of paxillin and, to a lesser extent, beta1-integrin. This was independent of cell-matrix adhesion through beta1-integrin. Subcellular fractionation revealed increased cosedimentation of paxillin with plasma membrane-containing fractions following HGF stimulation, without corresponding enhancements in paxillin coassociation with beta1 integrin or actin. Tyrosine phosphorylation of paxillin was reduced by HGF and was sensitive to the Src kinase inhibitor PP2. With these taken together, we propose that HGF upregulates a free cytosolic pool of paxillin that is unaffiliated with either the cytoskeleton or focal cell-matrix contacts. Thus early spreading responses to HGF may partly relate to increased paxillin availability for incorporation into, and turnover within, dynamic cytoskeletal/membrane complexes whose rapid and transient adhesion to the matrix drives migration.  相似文献   

17.
pp125FAK is a tyrosine kinase that appears to regulate the assembly of focal adhesions and thereby promotes cell spreading on the extracellular matrix. In some cells, the C terminus of pp125FAK is expressed as a separate protein, pp41/43FRNK. We have previously shown that overexpression of pp41/43FRNK inhibits tyrosine phosphorylation of pp125FAK and paxillin and, in addition, delays cell spreading and focal adhesion assembly. Thus, pp41/43FRNK functions as a negative inhibitor of adhesion signaling and provides a tool to dissect the mechanism by which pp125FAK promotes cell spreading. We report here that the inhibitory effects of pp41/43FRNK expression can be rescued by the co-overexpression of wild-type pp125FAK and partially rescued by catalytically inactive variants of pp125FAK. However, coexpression of an autophosphorylation site mutant of pp125FAK, which fails to bind the SH2 domain of pp60c-Src, or a mutant that fails to bind paxillin did not promote cell spreading. In contrast, expression of pp41/43FRNK and pp60c-Src reconstituted cell spreading and tyrosine phosphorylation of paxillin but did so without inducing tyrosine phosphorylation of pp125FAK. These data provide additional support for a model whereby pp125FAK acts as a "switchable adaptor" that recruits pp60c-Src to phosphorylate paxillin, promoting cell spreading. In addition, these data point to tyrosine phosphorylation of paxillin as being a critical step in focal adhesion assembly.  相似文献   

18.
Mena is an Ena/VASP family actin regulator with roles in cell migration, chemotaxis, cell-cell adhesion, tumor cell invasion, and metastasis. Although enriched in focal adhesions, Mena has no established function within these structures. We find that Mena forms an adhesion-regulated complex with α5β1 integrin, a fibronectin receptor involved in cell adhesion, motility, fibronectin fibrillogenesis, signaling, and growth factor receptor trafficking. Mena bound directly to the carboxy-terminal portion of the α5 cytoplasmic tail via a 91-residue region containing 13 five-residue "LERER" repeats. In fibroblasts, the Mena-α5 complex was required for "outside-in" α5β1 functions, including normal phosphorylation of FAK and paxillin and formation of fibrillar adhesions. It also supported fibrillogenesis and cell spreading and controlled cell migration speed. Thus, fibroblasts require Mena for multiple α5β1-dependent processes involving bidirectional interactions between the extracellular matrix and cytoplasmic focal adhesion proteins.  相似文献   

19.
MEK Kinase 2 (MEKK2) is a serine/threonine kinase that functions as a MAPK kinase kinase (MAP3K) to regulate activation of Mitogen-activated Protein Kinases (MAPKs). We recently have demonstrated that ablation of MEKK2 expression in invasive breast tumor cells dramatically inhibits xenograft metastasis, but the mechanism by which MEKK2 influences metastasis-related tumor cell function is unknown. In this study, we investigate MEKK2 function and demonstrate that silencing MEKK2 expression in breast tumor cell significantly enhances cell spread area and focal adhesion stability while reducing cell migration. We show that cell attachment to the matrix proteins fibronectin or Matrigel induces MEKK2 activation and localization to focal adhesions. Further, we reveal that MEKK2 ablation enhances focal adhesion size and frequency, thereby linking MEKK2 function to focal adhesion stability. Finally, we show that MEKK2 knockdown inhibits fibronectin-induced Extracellular Signal-Regulated Kinase 5 (ERK5) signaling and Focal Adhesion Kinase (FAK) autophosphorylation. Taken together, our results strongly support a role for MEKK2 as a regulator of signaling that modulates breast tumor cell spread area and migration through control of focal adhesion stability.  相似文献   

20.
alpha(9)beta(1) integrin is a member of the beta(1) integrin family, plays an important role in extravasation of neutrophils at sites of acute inflammation, and is required for the normal development of the lymphatic system. The alpha(9) and alpha(4) integrin subunits are most closely related and form a subfamily of integrin alpha subunits. Previously, we have reported that the alpha(4) cytoplasmic domain directly and tightly binds paxillin, an intracellular signaling adaptor molecule. This interaction accounts for some of the unusual functional responses to alpha(4) integrin-mediated cell adhesion, including stimulation of cell migration and inhibition of cell spreading and focal adhesion formation. In the current studies, we have examined the interaction between the alpha(9) cytoplasmic domain and paxillin. Here we report that the alpha(9) cytoplasmic domain binds paxillin directly and tightly and that the alpha(9)-paxillin association inhibits cell spreading. We have identified amino acid residues in the alpha(9) cytoplasmic domain, Trp(999) and Trp(1001), that are critical for paxillin binding, and alanine substitution of either Trp(999) or Trp(1001) blocks paxillin binding. Furthermore, these mutations also reverse the effect of the alpha(9) cytoplasmic domain on cell spreading. Thus, the alpha(9) and alpha(4) integrin subunits form a paxillin-binding subfamily of integrin alpha subunits, and direct binding of paxillin to the alpha(9) cytoplasmic domain mediates some of the biological activities of the alpha(9)beta(1) integrin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号