首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of corticoids (hydrocortisone and dexamethasone) and epinephrine on the presynaptic action of purines was studied at the neuromuscular junction of the frog under two-electrode voltage-clamp conditions. Daily administration of hydrocortisone/dexamethasone (100 mg/kg into the lymphatic system) increased initially and later depressed the amplitude of multiquantum end-plate currents evoked by motor nerve stimulation. An initial facilitatory phase of the hormone action was accompanied by removal of the presynaptic action of ATP (for hydrocortisone only). Within the later phase (2 weeks of hydrocortisone administration), the inhibitory action of ATP was restored once again. The counteraction of ATP effect was reproduced under superfusion of the isolated muscle by a physiological solution containing hydrocortisone (not dexamethasone), indicating the nongenomic nature of the action of the hormone on presynaptic P2 receptors. This proved to be true in experiments on animals, which were stressed 30 min prior to the beginning of the experiment by electrical stimulation in a special cage. Independently of acute or chronic administration of hydrocortisone, the presynaptic action of another purine, adenosine, was preserved. Epinephrine only partially abolished the inhibitory effect of purines, which is indicative of the difference in the paths of incorporation of the biological effects of these agents. We suggest that prevention of the inhibitory action of ATP might be one of the components of a facilitatory acute stress reaction, while such an inhibitory feedback action is missing under chronic stress conditions.  相似文献   

2.
The effect of the corticosteroid hormone hydrocortisone on electrical activity in the lumbosacral portion of the spinal cord was studied in acute experiments on cats anesthetized with urethane and chloralose and immobilized with succinylcholine. The amplitude of mono- and polysynaptic discharges arising in the ventral roots in response to stimulation of various afferents of the animal's hind limb was increased by a statistically significant degree after intravenous injection of the hormone. The potentiating action of the hormone was strongest and most stable with respect to early and late postsynaptic potentials of the spinal cord. The dorsal cord potentials were not significantly changed by hydrocortisone. Spontaneous unit activity in the intermediate nucleus of the spinal cord rose sharply after administration of hydrocortisone. Before the action of the hormone the mean frequency of spontaneous discharges of 46 neurons was 7.91/sec, rising to 20/sec after the injection. The number of neurons with a high spontaneous firing rate also was increased. Prolonged extracellular recording of the spontaneous activity of the same neuron before and after administration of hydrocortisone also revealed a marked increase in the frequency of its discharges. The results are evidence of the activating effect of hydrocortisone on spinal interneuronal activity.  相似文献   

3.
A single injection of hydrocortisone to rats with ascite hepatoma 22 had practically no effect on tumour growth. Inhibition of tumour growth was observed only after reinoculation of ascite hepatoma to mice that had received no less than 8 daily injections of the hormone. A single injection of hydrocortisone induced inhibition of the cytotoxic activity and decreased phospholipid metabolism in peritoneal macrophages. Contrariwise, long-term administration of the hormone caused marked activation of macrophage cytotoxicity. In this case incorporation of 32P into macrophage phospholipids was restored up to the control level. It is concluded that one of mechanisms underlying the inhibitory effect of glucocorticoids on macrophages is inhibition of phospholipid turnover. Presumably, long-term administration of the hormone promotes the formation of a new population of macrophages insensitive to the inhibitory effect of glucocorticoids and possessing a high cytostatic activity. The appearance of such activated macrophages may account for the enhancement of hydrocortisone effect on tumour cells upon prolonged administration of the hormone.  相似文献   

4.
Prolactin receptors were monitored by measuring 125I-labeled prolactin binding to collagenase-dissociated mammary epithelial cells of lactating BALB/c mice. Specific receptors for iodine-labeled prolactin with an apparent dissociation constant (Kd) of 0.99 . 10(-9) M were present on the dissociated mammary cells. The binding was inhibited by ovine prolactin, human growth hormone and human placental lactogen but not by follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, bovine growth hormone or insulin. Adrenal ablation of nursing mothers caused a reduction of the number of prolactin receptors and this effect was preventable by hydrocortisone therapy. Hydrocortisone injections to mothers 3 days after adrenalectomy also induced a replenishment of the prolactin receptors on the mammary cells. Injections of progesterone failed to sustain the high level of mammary cell prolactin receptors in adrenalectomized animals. Stimultaneous injections of hydrocortisone and progesterone to animals 3 days after adrenalectomy caused a partial suppression of the stimulatory action of hydrocortisone alone. The results suggest that hydrocortisone can exert a modulatory influence on mammary cell prolactin receptors in non-hypophysectomized post-partum mice without altering the dissociation constant (Kd) of the receptors.  相似文献   

5.
Influence of Hydrocortisone on Chick Embryo Retina Development   总被引:1,自引:1,他引:0  
Treatment of chick embryos in ovo with hydrocortisone-21-phosphate (a single dose of 150 micrograms) caused a marked reduction of retinal thymidine kinase activity 24 h later. The inhibitory effect was highest (65-70%) in 8-10-day-old embryos and declined with age, disappearing after day 15. It was accompanied by a reduction in thickness of the retinal layers. Adrenocorticotropic hormone (ACTH) treatment (10 micrograms daily for 2 days) also produced an age-dependent inhibitory effect on retinal thymidine kinase, whereas treatment with a single dose of 200 micrograms of metopirone, a compound that prevents the 11 beta-hydroxylation of steroid molecules in the adrenal glands, impeded the decrease in thymidine kinase activity that normally occurs in chick embryo retina after day 9 of development. In addition, metopirone prevented the inhibition exerted by ACTH on thymidine kinase activity but had no effect on the action of hydrocortisone.  相似文献   

6.
Hydrocortisone in physiologic concentrations resulted in a reduction in sterol synthesis by cultured normal human skin fibroblasts. These changes were observed when [14C]acetate, [14C]octanoic acid and 3H2O were used as precursors. However, the incorporation of [3H]mevalonic acid lactone into digitonin-precipitable sterols was not affected by hydrocortisone, suggesting that hydrocortisone inhibits sterol synthesis at a site prior to the formation of mevalonic acid. In contrast, the activity of hydroxymethylglutaryl-CoA reductase was stimulated several-fold by the hormone. Thus, the inhibitory effect of hydrocortisone on the cholesterol synthetic pathway may be on hydroxymethylglutaryl-CoA synthase.  相似文献   

7.
A study was made of the action of various concentrations of ATP on insulin ability to bind to the receptors of the liver and muscle membranes in control and streptozocin-induced diabetes animals. Specific binding of 125I-insulin to the receptors of the liver and muscle membranes was shown to rise in animals with streptozocin-induced diabetes as compared to control. This effect was most pronounced in the muscle membranes. Preincubation of the membranes with ATP did not affect insulin binding to the liver and muscle receptors of control animals. However, hormone binding to the liver receptors of diabetic rats was drastically suppressed by ATP (10(-3) M). Less ATP concentrations (10(12) M) produced an additional inhibitory action which was not marked. ATP led to decreased insulin binding to the muscle receptors of diabetic rats only at extremely low concentrations (10(-12) M). The data obtained may be of importance for regulation of membrane phosphorylation in the states characteristic of insulin resistance.  相似文献   

8.
Epinephrine, hydrocortisone, and dibutyril cAMP inhibited glycolysis and glucogenolysis. The inhibitory effect was also found when glucose-6-phosphate (G-6-P) was used as a glycolysis substrate, but not for fructose-1,6-diphosphate. This is the evidence of hexokinase activity inhibition by hormones and dibutyril cAMP, and presumably of phospholylase and phosphofructokinase as well. In the simulated cell-free system the hormones produced no effect, dibutyril cAMP inhibiting hexokinase alone. For the realization of hormones effect their interaction with the cell membrane is required. Inhibition of glycogen and G-6-P decomposition to lactic acid in the rat liver slices was not associated with the hormone action on phosphorylase and phosphofructokinase through cAMP and proteinkinase directly. The results obtained indicated the existence of a supplementary mechanism that modified cAMP effect on the activity of the said enzymes. Insulin was effective in any of the cases.  相似文献   

9.
Iodide, a substrate of thyroid metabolism, and acetylcholine depress cyclic AMP intracellular content and secretion in dog thyroid slices under TSH stimulation. A direct or indirect pseudocompetitive effect at the level of TSH receptor interaction has been rejected. Iodide and carbachol, both inhibited cyclic AMP accumulation in TSH stimulated dog thyroid slices but only the effect of carbachol was suppressed in the presence of isobutylmethylanthine. Ro 20-1724 did not relieve either inhibitory effect. Carbachol greatly enhanced cyclic AMP disposal in TSH prestimulated slices after the cut off of hormone action by a trypsin treatment. This effect was also suppressed by isobutylmethylxanthine but not by Ro 20-1724. No action of iodide could be evidenced on cyclic AMP disposal in similar slices, although a clear effect after the same time of iodide action was observed on cyclic AMP accumulation. Neither carbachol, nor iodide depresses ATP levels in these slices. The data suggest that carbachol exerts its action through an activation of cyclic AMP disappearance probably by an activation of cyclic AMP phosphodiesterase and that iodide, through an oxidized intermediate, experts its inhibitory effect at the level of cyclic AMP synthesis.  相似文献   

10.
Prolactin receptors were monitored by measuring 125I-labeled prolactin binding to collagenase-dissociated mammary epithelial cells of lactating BALB/c mice. Specific receptors for iodine-labeled prolactin with an apparent dissociation constant (Kd) of 0.99 · 10?9 M were present on the dissociated mammary cells. The binding was inhibited by ovine prolactin, human growth hormone and human placental lactogen but not by follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, bovine growth hormone or insulin. Adrenal ablation of nursing mothers caused a reduction of the number of prolactin receptors and this effect was preventable by hydrocortisone therapy. Hydocortisone injections to mothers 3 days after adrenalectomy also induced a replenishment of the prolactin receptors on the mammary cells. Injections of progesterone failed to sustain the high level of mammary cell prolactin receptors in adrenalectomized animals. Stimultaneous injections of hydrocortisone and progesterone to animals 3 days after adrenalectomy caused a partial suppression of the stimulatory action of hydrocortisone alone. The results suggest that hydrocortisone can exert a modulatory influence on mammary cell prolactin receptors in non-hypophysectomized post-partum mice without altering the dissociation constant (Kd) of the receptors.  相似文献   

11.
It has previously been indicated that the inhibitory power of the granulocytic chalone is not influenced by adrenalin. It is now shown that this is true both in absence and in presence of exogenous hydrocortisone. It is also shown that hydrocortisone itself does not cause significant inhibition of DNA synthesis in rat bone marrow cells in vitro, but that it does act to augment the inhibitory effect which the granulocytic chalone induces. It is suggested that the primary action of hydrocortisone may be on the cell membrane which changes the cell wall permeability to chalone, perhaps by reducing its rate of loss from the cells.  相似文献   

12.
13.
A study was made of the effect of hydrocortisone (HC) injected to animals with delayed hypersensitivity (DH) to BCG antigens on the cytotoxic activity of lymphocytes and production of lympho- and macrophage toxins. The cytotoxic test with the use of sensitized lymphocytes and preparation of lympho- and macrophage toxins were performed in vitro in the presence of specific microbial antigens. It was shown that HC exerts the most intense inhibitory action on the production of macrophage toxin. High doses of the hormone also inhibited the production of lymphotoxin. At the same time the cytotoxic activity of lymphocytes of the lymph nodes in DH was not inhibited by the employed doses of HC. No reduction was seen either in the sensitivity of autologous adhesive cells (macrophages) used as target cells for studying the cytotoxic activity of lymphocytes.  相似文献   

14.
The expression of glutamine synthetase (GS; L-glutamate ammonia ligase; EC 6.3.1.2) in primary cultures of chick astroglial cells and neurons grown in a chemically defined medium, with and without insulin added, was investigated. An inhibitory effect of insulin toward GS activity, and specific to chick astroglial cells, was observed. Neurons in culture were not sensitive to the hormone effect. Modulation of the activating effect of hydrocortisone on glial GS by insulin was also observed. The data suggest that insulin contributes to the regulation of the metabolism of amino acid neurotransmitters via its effect on GS.  相似文献   

15.
16.
We used the patch-clamp technique to study the effects of extracellular ATP on the activity of ion channels recorded in rat pancreatic beta-cells. In cell-attached membrane patches, action currents induced by 8.3 mM glucose were inhibited by 0.1 mM ATP, 0.1 mM ADP or 15 microM ADPbetaS but not by 0.1 mM AMP or 0.1 mM adenosine. In perforated membrane patches, action potentials were measured in current clamp, induced by 8.3 mM glucose, and were also inhibited by 0.1 mM ATP with a modest hyperpolarization to -43 mV. In whole-cell clamp experiments, ATP dose-dependently decreased the amplitudes of L-type Ca2+ channel currents (ICa) to 56.7+/-4.0% (p<0.001) of the control, but did not influence ATP-sensitive K+ channel currents observed in the presence of 0.1 mM ATP and 0.1 mM ADP in the pipette. Agonists of P2Y purinoceptors, 2-methylthio ATP (0.1 mM) or ADPbetaS (15 microM) mimicked the inhibitory effect of ATP on ICa, but PPADS (0.1 mM) and suramin (0.2 mM), antagonists of P2 purinoceptors, counteracted this effect. When we used 0.1 mM GTPgammaS in the pipette solution, ATP irreversibly reduced ICa to 58.4+/-6.6% of the control (p<0.001). In contrast, no inhibitory effect of ATP was observed when 0.2 mM GDPbetaS was used in the pipette solution. The use of either 20 mM BAPTA instead of 10 mM EGTA, or 0.1 mM compound 48/80, a blocker of phospholipase C (PLC), in the pipette solution abolished the inhibitory effect of ATP on ICa, but 1 microM staurosporine, a blocker of protein kinase C (PKC), did not. When the beta-cells were pretreated with 0.4 microM thapsigargin, an inhibitor of the endoplasmic reticulum (ER) Ca2+ pump, ATP lost the inhibitory effect on ICa. These results suggest that extracellular ATP inhibits action potentials by Ca2+-induced ICa inhibition in which an increase in cytosolic Ca2+ released from thapsigargin-sensitive store sites was brought about by a P2Y purinoceptor-coupled G-protein, PI-PLC and IP3 pathway.  相似文献   

17.
The inhibitory action of hyperglycemia is mediated by vagal afferent fibers innervating the stomach and duodenum. Our in vitro studies showed that a subset of nodose ganglia neurons is excited by rising ambient glucose, involving inactivation of ATP-sensitive K(+) (K(ATP)) channels and leading to membrane depolarization and neuronal firing. To investigate whether nodose ganglia K(ATP) channels mediate gastric relaxation induced by hyperglycemia, we performed in vivo gastric motility studies to examine the effects of K(ATP) channel activators and inactivators. Intravenous infusion of 20% dextrose induced gastric relaxation in a dose-dependent manner. This inhibitory effect of hyperglycemia was blocked by diazoxide, a K(ATP) channel activator. Conversely, tolbutamide, a K(ATP) channel inactivator, induced dose-dependent gastric relaxation, an effect similar to hyperglycemia. Vagotomy, perivagal capsaicin treatment, and hexamethonium each prevented the inhibitory action of tolbutamide. Similarly, N(G)-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, also blocked tolbutamide's inhibitory effect. To show that K(ATP) channel inactivation at the level of the nodose ganglia induces gastric relaxation, we performed electroporation of the nodose ganglia with small interfering RNA of Kir6.2 (a subunit of K(ATP)) and plasmid pEGFP-N1 carrying the green fluorescent protein gene. The gastric responses to hyperglycemia and tolbutamide were not observed in rats with Kir6.2 small interfering RNA-treated nodose ganglia. However, these rats responded to secretin, which acts via the vagal afferent pathway, independently of K(ATP) channels. These studies provide in vivo evidence that hyperglycemia induces gastric relaxation via the vagal afferent pathway. This action is mediated through inactivation of nodose ganglia K(ATP) channels.  相似文献   

18.
Mammary epithelial cells were prepared by collagenase digestion of tissue from mid-pregnant rabbits and cultured for up to 6 days on either collagen gels or an extracellular matrix prepared from the same tissue. The behaviour of the cells in serum-supplemented medium containing combinations of insulin, prolactin, hydrocortisone, estradiol and progesterone were monitored by measuring rates of casein synthesis, lactose synthesis, DNA synthesis and protein degradation. After 6 days, epithelial cells on floating collagen gels showed substantial increases in casein synthesis and DNA synthesis over freshly-prepared cells, following a decline during the first 3 days when the collagen gels are contracting. The optimum hormone combination for casein synthesis was insulin + prolactin + hydrocortisone, whereas for optimum DNA synthesis the additional presence of estradiol and progesterone was required. Cells on extracellular matrix showed increased rates of both casein synthesis and DNA synthesis by day 6 in the presence of insulin + prolactin + hydrocortisone, with additional estradiol + progesterone having an inhibitory effect. Whereas on day 2 rates of intracellular protein degradation were generally lower in cells on extracellular matrix, by day 6 rates of protein degradation were lowest in cells cultured on collagen gels with insulin + prolactin + hydrocortisone. In all cases, rates of lactose synthesis fell to low levels as the culture proceeded. Pulse-chase labelling of freshly-prepared cells with [32P]orthophosphate in medium containing serum and insulin + prolactin + hydrocortisone demonstrated that newly-synthesized casein was degraded during its passage through the epithelial cell. The influences of the collagen gels and extracellular matrix and of the hormone combinations on epithelial cell differentiation and secretory activity are discussed.  相似文献   

19.
In the present study, a possible sertraline action on cerebral pre-synaptic Na(+) channels was investigated. For this purpose, the effect of sertraline on responses induced by the Na(+) channel opener, veratridine, namely the increase in Na(+) and in neurotransmitter release in hippocampus-isolated nerve endings was investigated. Results show that sertraline in the low μM range (1.5-25?μM) progressively inhibits the rise in Na(+) and the release of pre-loaded [(3) H]Glu as well as the release of endogenous 5-HT, Glu and GABA (detected by HPLC) induced by veratridine depolarization either under external Ca(2+) -free conditions or in the presence of external Ca(2+) . In addition, under non-depolarized conditions, sertraline (25 μM) increased the external concentration of 5-HT at expense of its internal concentration, and unchanged the external and internal concentrations of the amino acid neurotransmitters and of the 5-HT main metabolite, 5-HIAA. This result is consistent with the sertraline inhibitory action of the serotonin transporter. However, sertraline is unlikely to inhibit pre-synaptic Na(+) channels permeability by increasing external 5-HT. Because 5-HT in a wide concentration range (1-1000 μM) did not change the veratridine-induced increase in Na(+) . In summary, present findings demonstrate that besides the inhibition of 5-HT reuptake, sertraline is an effective inhibitor of pre-synaptic Na(+) channels controlling neurotransmitter release.  相似文献   

20.
The effect of ATP and adenosine on spontaneous activity and orthodromic responses of single neurons and on global evoked potentials was investigated in surviving slices of rat neocortex, hippocampus, dentate fascia, and cerebellumin vitro. ATP and adenosine, added to the incubation medium, had a twofold action on neurons: excitatory and inhibitory. Excitation was observed only if high concentrations of the substances (10?2, less frequently 10?3 M) were used, and in the case of adenosine it was very weak. The excitatory effect is evidently due to the direct depolarizing action of these substances on the cell membrane. The inhibitory action of both ATP and adenosine was manifested even in low concentrations (10?6–10?7 M) and was expressed as inhibition of postsynaptic responses of neurons at the presynaptic level and of their spontaneous activity. Hippocampal neurons were most sensitive to these substances, cerebellar neurons least. Apamine was found to have no effect on the inhibitory action of ATP. The results do not support the view that ATP and adenosine may be classed as CNS neurotransmitters. The possible role of these drugs as neuromodulators of synaptic transmission in the CNS is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号