共查询到20条相似文献,搜索用时 0 毫秒
1.
In the thylakoid membrane of chloroplasts as well as in the cytoplasmic membrane of bacteria, the DeltapH/Tat-dependent protein transport pathway is responsible for the translocation of folded proteins. Using the chimeric 16/23 protein as model substrate in thylakoid transport experiments, we dissected the transport process into several distinct steps that are characterized by specific integral translocation intermediates. Formation of the early translocation intermediate Ti-1, which still exposes the N and the C terminus to the stroma, is observed with thylakoids pretreated with (i) solutions of chaotropic salts or alkaline pH, (ii) protease, or (iii) antibodies raised against TatA, TatB, or TatC. Membrane insertion takes place even into liposomes, demonstrating that proteinaceous components are not required. This suggests that Tat-dependent transport may be initiated by the unassisted insertion of the substrate into the lipid bilayer, and that interaction with the Tat translocase takes place only in later stages of the process. 相似文献
2.
In chloroplasts and bacteria, the Tat (twin-arginine translocation) system is engaged in transporting folded passenger proteins across the thylakoid and cytoplasmic membranes, respectively. To date, three membrane proteins (TatA, TatB, and TatC) have been identified to be essential for Tat-dependent protein translocation in the plant system, whereas soluble factors seem not to be required. In contrast, in the bacterial system, several cytosolic chaperones were described to be involved in Tat transport processes. Therefore, we have examined whether stromal or peripherally associated membrane proteins also play a role in Tat transport across the thylakoid membrane. Analyzing both authentic precursors as well as the chimeric 16/23 protein, which allows us to study each step of the translocation process individually, we demonstrate that a soluble form of TatA is present in the chloroplast stroma, which significantly improves the efficiency of Tat-dependent protein transport. Furthermore, this soluble TatA is able to reconstitute the Tat transport properties of thylakoid membranes that are transport-incompetent due to extraction with solutions of chaotropic salts. 相似文献
3.
The Delta pH pathway is one of two systems for protein transport to the thylakoid lumen. It is a novel transport system that requires only the thylakoidal DeltapH to power translocation. Several substrates of the Delta pH pathway, including the intermediate precursor form of OE17 (iOE17) and the truncated precursor form of OE17 (tOE17), were shown to bind to the membrane in the absence of the DeltapH and be transported into the lumen when the DeltapH was restored. Binding occurred without energy or soluble factors, and efficient transport from the bound state ( approximately 80-90%) required only the DeltapH. Binding is due to protein-protein interactions because protease pretreatment of thylakoids destroyed their binding capability. Precursors are bound to a specific site on the Delta pH pathway because binding was competed by saturating amounts of Delta pH pathway precursor proteins, but not by a Sec pathway precursor protein. These results suggested that precursor tOE17 binds to components of the Delta pathway translocation machinery. Hcf106 and Tha4 are two components of the Delta pH pathway machinery. Antibodies to Hcf106 or Tha4, when prebound to thylakoids, specifically inhibited precursor transport on the Delta pH pathway. However, only Hcf106 antibodies reduced the level of precursor binding. These results suggest that Hcf106 functions in early steps of the transport process. 相似文献
4.
Xiaoping Yi 《FEBS letters》2009,583(12):2142-116
Interfering RNA was used to suppress the expression of the genes At1g06680 and At2g30790 in Arabidopsis thaliana, which encode the PsbP-1 and PsbP-2 proteins, respectively, of Photosystem II. A phenotypic series of transgenic plants was recovered that expressed intermediate and low amounts of PsbP. Earlier we had documented significant alterations in a variety of Photosystem II parameters in these plant lines [Yi, X., Liu, H., Hargett, S. R., Frankel, L. K., Bricker, T. M. (2007). The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J. Biol. Chem. 34, 24833-24841]. In this communication, we document extensive defects in the thylakoid membrane architecture of these plants. Interestingly, strong interfering RNA suppression of the genes encoding the PsbQ protein (At4g21280 and At4g05180) was found to have no effect on the architecture of thylakoid membranes. 相似文献
5.
The biosynthesis of Fraction I protein in isolated protoplasts is compared with that in the plant. Radioactive precursors were incorporated into isolated protoplasts (in vitro labeling) and into leaves, from which the protoplasts were isolated later (in situ labeling). The biosynthesis of Fraction I protein stopped almost completely as soon as the protoplasts were incubated in the culture medium. 相似文献
6.
Elena Aseeva Friederich Ossenbühl Claudia Sippel Won K Cho Bernhard Stein Lutz A Eichacker J?rg Meurer Gerhard Wanner Peter Westhoff Jürgen Soll Ute C Vothknecht 《Plant Physiology and Biochemistry》2007,45(2):119-128
Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1 protein to assemble into a homo-oligomeric complex, indicating that oligomerization is a prerequisite for Vipp1 function. A Vipp1-ProteinA fusion protein, expressed in the Deltavipp1 mutant background, is able to reinstate oligomerization and restore photoautotrophic growth. Plants containing Vipp1-ProteinA in amounts comparable to Vipp1 in the wild type exhibit a wild type phenotype. However, plants with a reduced amount of Vipp1-ProteinA protein are growth-retarded and significantly paler than the wild type. This phenotype is caused by a decrease in thylakoid membrane content and a concomitant reduction in photosynthetic activity. To the extent that thylakoid membranes are made in these plants they are properly assembled with protein-pigment complexes and are photosynthetically active. This strongly supports a function of Vipp1 in basic thylakoid membrane formation and not in the functional assembly of thylakoid protein complexes. Intriguingly, electron microscopic analysis shows that chloroplasts in the mutant plants are not equally affected by the Vipp1 shortage. Indeed, a wide range of different stages of thylakoid development ranging from wild-type-like chloroplasts to plastids nearly devoid of thylakoids can be observed in organelles of one and the same cell. 相似文献
7.
All identified membrane fusion proteins are transmembrane proteins. In the present study, we explored the post-mitotic reassembly of the NE (nuclear envelope). The proteins that drive membrane rearrangements in NE assembly remain unknown. To determine whether transmembrane proteins are prerequisite components of this fusion machinery, we have focused on nuclear reconstitution in a cell-free system. Mixing of soluble interphase cytosolic extract and MV (membrane vesicles) from amphibian eggs with chromatin results in the formation of functional nuclei. We replaced MV and cytosol with protein-free phosphatidylcholine LS (liposomes) that were pre-incubated with interphase cytosol. While later stages of NE assembly yielding functional nucleus did not proceed without integral proteins of MV, LS-associated cytosolic proteins were sufficient to reconstitute membrane targeting to the chromatin and GTP-dependent lipid mixing. Binding involved LS-associated A-type lamin, and fusion involved Ran GTPase. Thus in contrast with post-fusion stages, fusion initiation in NE assembly, like membrane remodelling in budding and fission, does not require transmembrane proteins. 相似文献
8.
Determination of delta psi, delta pH and the proton electrochemical gradient in isolated cholinergic synaptic vesicles 总被引:1,自引:0,他引:1
The electrical potential (Δψ) of intact cholinergic synaptic vesicles was measured in the presence and absence of the proton translocator carbonyl cyanide p-trifluoromethoxy-phenylhydrazone (FCCP), and the results were utilized to calculate the vesicular proton chemical gradient (ΔpH) and proton electrochemical potential . At external pH = 7.4 the vesicles maintain a proton electrochemical gradient of (positive inside) which is composed of (negative inside) and (acidic inside). The proton chemical gradient (ΔpH) increases as a function of pHout whereas the vesicular electrical potential (Δψ) is only slightly affected by the external pH. Consequently, is larger at basic external pH values ( at pHout = 9.0) and smaller at acidic external pH values ( at (pHout = 5.6). The possible physiological role of the electrochemical potentials in maintaining high concentrations of acetylcholine within the cholinergic synaptic vesicle is discussed. 相似文献
9.
E. C. Cocking 《Planta》1966,68(2):206-214
Summary Protoplasts were isolated from tomato fruit locule tissue and incubated with tobacco mosaic virus. Electron microscope observations on sections of suitably fixed and embedded material revealed that virus particles readily became attached to the plasmalemma, particularly in small invaginations in the surface of the protoplast. Virus particles were later observed in vesicles within the cytoplasm and it was clear that these vesicles were being formed as a result of pinocytic activity at the surface of the protoplast. Later, virus particles were observed near the nucleus. It is suggested that an initial attachment of the virus to the plasmalemma followed by a pinocytic uptake may represent the initial stages of virus infection of plant cells and that the pinocytic vesicle, containing virus, serves as the vehicle of cellular infection. 相似文献
10.
11.
The G-protein activators guanosine 5'-O-(3-thiodiphosphate) (GTPΓS) and aluminum fluoride (AlF) are thought to inhibit transport between Golgi cisternae by causing the accumulation of nonfunctional coatomer-coated transport vesicles on the Golgi. Although GTPΓS and AlF inhibit transport in cell-free intra-Golgi transport systems, blocking coatomer vesicle formation does not. We therefore determined whether inhibition of in vitro Golgi transport by these agents requires coatomer vesicle formation. Depletion of coatomer was found to completely block coated vesicle formation on Golgi cisternae without affecting inhibition of in vitro transport by either GTPΓS or AlF. Depletion of ADP-ribosylation factor (ARF) prevented inhibition of transport by GTPΓS, but not by AlF, suggesting that the AlF-sensitive component in transport may not be a GTP-binding protein. Surprisingly, depletion of cytosolic ARF did not prevent the GTPΓS-induced formation of Golgi-coated vesicles, whereas ARF was required for AlF-induced vesicle formation. Although ARF or coatomer depletion caused an increase in the fenestration of cisternae, no other utrastructural changes were observed that might explain the inhibition of transport by GTPΓS or AlF. These findings suggest that ARF-GTPΓS and AlF act by distinct and coatomer-independent mechanisms to inhibit membrane fusion in cell-free intra-Golgi transport. 相似文献
12.
13.
Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein
下载免费PDF全文

Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein-associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT-VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus. 相似文献
14.
Glucose-fructose oxidoreductase (GFOR), a periplasmic protein of Zymomonas mobilis, is synthesized as a precursor polypeptide with a twin-R signal peptide for Sec-independent protein export in bacteria. In higher plant chloroplasts, twin-R signal peptides are specific targeting signals for the Sec-independent delta pH pathway of the thylakoid membrane system. In agreement with the assumed common phylogenetic origin of the two protein transport mechanisms, GFOR can be efficiently translocated by the delta pH-dependent pathway when analyzed with isolated thylakoid membranes. Transport is sensitive to the ionophore nigericin and competes with specific substrates for the delta pH-dependent transport route. In contrast, neither sodium azide nor enzymatic destruction of the nucleoside triphosphates in the assays affects thylakoid transport of GFOR indicating that the Sec apparatus is not involved in this process. Mutagenesis of the twin-R motif in the GFOR signal peptide prevents membrane translocation of the protein emphasizing the importance of these residues for the transport process. 相似文献
15.
Targeted disruption of the homeobox gene T/ebp (Ttf1) in mice results in ablation of the thyroid and pituitary, and severe deformities in development of the lung and hypothalamus. T/ebp is expressed in the thyroid, lung, and ventral forebrain during normal embryogenesis. Examination of thyroid development in T/ebp homozygous null mutant embryos revealed that the thyroid rudiment is initially formed but is eliminated through apoptosis. Absence of T/EBP expression in the lung primordium does not activate apoptosis since a lung tissue, albeit dysmorphic, is nevertheless formed in T/ebp-/- embryos. These results demonstrate that T/EBP is not required for the initial specification of thyroid or lung primordia, but is absolutely essential for the development and morphogenesis of these organs. 相似文献
16.
Wild-type levels of abscisic Acid are not required for heat shock protein accumulation in tomato 总被引:2,自引:0,他引:2
下载免费PDF全文

Bray EA 《Plant physiology》1991,97(2):817-820
Levels of endogenous abscisic acid (ABA) in wild type were not required for the synthesis of heat shock proteins in detached leaves of tomato (Lycopersicon esculentum Mill., cv Ailsa Craig). Heat-induced alterations in gene expression were the same in the ABA-deficient mutant of tomato, flacca, and the wild type. Heat tolerance of the mutant was marginally less that the wild type, and in contrast, ABA applications significantly reduced the heat tolerance of wild-type leaves. It was concluded that elevated levels of endogenous ABA are not involved in the tomato heat shock response. 相似文献
17.
Vivian Fincher Carole Dabney-Smith Kenneth Cline 《European journal of biochemistry》2003,270(24):4930-4941
Assembly of the components of the thylakoid deltapH-dependent/Tat protein transport machinery was analyzed in vitro. Upon incubation with intact chloroplasts, precursors to all three components, Hcf106, cpTatC and Tha4, were imported into the organelle and assembled into characteristic endogenous complexes. In particular, all of the imported cpTatC and approximately two-thirds of the imported Hcf106 functionally assembled into 700 kDa complexes capable of binding Tat pathway precursor proteins. The amounts assembled into thylakoids by this procedure were moderate. However, physiological quantities of mature forms of Tha4 and Hcf106 were integrated into isolated thylakoids and a significant percentage of the Hcf106 so integrated was assembled into the 700 kDa complex. Interestingly, a mutant form of Hcf106 in which an invariant transmembrane glutamate was changed to glutamine integrated into the membrane but did not assemble into the receptor complex. Analysis of energy and known pathway component requirements indicated that Hcf106 and Tha4 integrate by an unassisted or 'spontaneous' mechanism. The functionality of in vitro integrated Tha4 was verified by its ability to restore transport to thylakoid membranes from the maize tha4 mutant, which lacks the Tha4 protein. Development of this functional in vitro assembly assay will facilitate structure-function studies of the thylakoid Tat pathway translocation machinery. 相似文献
18.
Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. 总被引:3,自引:1,他引:3
下载免费PDF全文

The construction of a mutant Escherichia coli strain which cannot synthesize phosphatidylethanolamine provides a tool to study the involvement of non-bilayer lipids in membrane function. This strain produces phosphatidylglycerol and cardiolipin (CL) as major membrane constituents and requires millimolar concentrations of divalent cations for growth. In this strain, the lipid phase behaviour is tightly regulated by adjustment of the level of CL which favours a nonbilayer organization in the presence of specific divalent cations. We have used an in vitro system of inverted membrane vesicles to study the involvement of non-bilayer lipids in protein translocation in the secretion pathway. In this system, protein translocation is very low in the absence of divalent cations but can be enhanced by inclusion of Mg2+, Ca2+ or Sr2+ but not by Ba2+ which is unable to sustain growth of the mutant strain and cannot induce a non-bilayer phase in E. coli CL dispersions. Alternatively, translocation in cation depleted vesicles could be increased by incorporation of the non-bilayer lipid DOPE (18:1) but not by DMPE (14:0) or DOPC (18:1), both of which are bilayer lipids under physiological conditions. We conclude that non-bilayer lipids are essential for efficient protein transport across the plasma membrane of E. coli. 相似文献
19.
The H(+)-ATPase from chloroplasts was brought into the active, reduced state. Then, an electrochemical potential difference of protons across the thylakoid membranes was generated by an acid-base transition, delta pH, combined with a K+/valinomycin diffusion potential, delta psi. The initial rate of ATP synthesis was measured with a rapid-mixing quenched-flow apparatus in the time-range between 20-150 ms. The rate of ATP synthesis depends in a sigmoidal way on delta pH. Increasing diffusion potentials shifts the delta pH-dependencies to lower delta pH values. Analysis of the data indicate that the rate of ATP synthesis depends on the electrochemical potential difference of protons irrespective of the relative contribution of delta pH and delta psi. 相似文献
20.
The integration of light-harvesting chlorophyll proteins (LHCPs) into the thylakoid membrane proceeds in two steps. First, LHCP interacts with a chloroplast signal recognition particle (cpSRP) to form a soluble targeting intermediate called the transit complex. Second, LHCP integrates into the thylakoid membrane in the presence of GTP, at least one other soluble factor, and undefined membrane components. We previously determined that cpSRP is composed of 43- and 54-kDa polypeptides. We have examined the subunit stoichiometry of cpSRP and find that it is trimeric and composed of two subunits of cpSRP43/subunit of cpSRP54. A chloroplast homologue of FtsY, an Escherichia coli protein that is critical for the function of E. coli SRP, was found largely in the stroma unassociated with cpSRP. When chloroplast FtsY was combined with cpSRP and GTP, the three factors promoted efficient LHCP integration into thylakoid membranes in the absence of stroma, demonstrating that they are all required for reconstituting the soluble phase of LHCP transport. 相似文献