首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in nonpolar aldehydes in bean cotyledons during ageing   总被引:1,自引:0,他引:1  
Ageing of plant organs is accompanied by an increased production of free radicals what results in membrane lipid peroxidation. Non-polar aldehydes originating from this process interact with the cellular material to form the fluorescent end-products, lipofuscin-like pigments (LFP). Their formation was studied both qualitatively and quantitatively in ageing of bean cotyledons. The concentration of lipofuscin-like pigments increased 9-fold in 14-d-old (senescent) cotyledons in relation to 8-d-old (young) cotyledons. HPLC fractionation patterns indicate changes in their composition during ageing. The LFP increase in old cotyledons was accompanied by elevated levels of non-polar aldehydes that increased during ageing to 167 %. The composition of aldehydes was studied by mass spectrometry. The most abundant fraction in both young and old cotyledon was represented by C12 aldehydes, which comprised both saturated and unsaturated species. We have observed differences in abundances of individual aldehydes between the young and the old cotyledons that might explain the differences in the composition of lipofuscin-like pigments. These results support the involvement of free radicals in plant ageing; however, it is suggested that plant aldehydic products of lipid peroxidation differ from those found in animals.  相似文献   

2.
The resistance to killing by free radicals of two mutants ofPhaffia rhodozyma was determined. Mutant 5–7 did not produce astaxanthin but produced β-carotene, while mutant 3–4 did not produce any carotenoid pigments. The resistance of mutant 5–7 was the same as that of the wild type but mutant 3–4 was rapidly killed. Carotenoid pigments increased the resistance to killing by free radicals. We investigated the effects of free radicals, generated by H2O2 and Fe2+ added to the medium, on wild-type cells and mutants ofP. rhodozyma. Unpigmented mutants of basidiomycetous yeasts (Rhodotorula spp. and others) are more susceptible to killing by UV-irradiation than the pigmented, wild-type strains. Therefore, we investigated the effect of free radicals on a similar basidiomycetous yeast,P. rhodozyma, a species of economic importance, in the biological production of astaxanthin.  相似文献   

3.
Whole-body gamma irradiation of rats induced the formation of lipofuscin-like pigments in erythrocytes. Erythrocytes that were damaged by oxidation were scavenged in the spleen, and lipofuscin-like pigments were transferred from erythrocytes to the spleen during this process. The time course of lipofuscin-like pigments in erythrocytes and spleen indicates that the pigments were not induced by the action of free radicals produced by ionizing radiation but rather were a sequela of postirradiation metabolic changes.  相似文献   

4.
Tocopherols (α-, β-, γ- and δ-tocopherols) represent a group of lipophilic antioxidants which are synthesized only by photosynthetic organisms. It is widely believed that protection of pigments and proteins of photosynthetic system and polyunsaturated fatty acids from oxidative damage caused by reactive oxygen species (ROS) is the main function of tocopherols. The wild type Columbia and two mutants of Arabidopsis thaliana with T-DNA insertions in tocopherol biosynthesis genes – tocopherol cyclase (vte1) and γ-tocopherol methyltransferase (vte4) – were analyzed after long-term outdoor growth. The concentration of total tocopherol was up to 12-fold higher in outdoor growing wild type and vte4 plant lines than in plants grown under laboratory conditions. The vte4 mutant plants had a lower concentration of chlorophylls and carotenoids, whereas the mutant plants had a higher level of total glutathione than of wild type. The activities of antioxidant enzymes superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate oxidase (AO, EC 1.10.3.3) were lower in both mutants, whereas activities of catalase (EC 1.11.1.6) and ascorbate peroxidase (APx, EC 1.11.1.11) were lower only in vte1 mutant plants in comparison to wild type plants. However, the activity of guaiacol peroxidase (GuPx, EC 1.11.1.7) was higher in vte1 and vte4 mutants than that in wild type. Additionally, both mutant plant lines had higher concentration of protein carbonyl groups and oxidized glutathione compared to the wild type, indicating the development of oxidative stress. These results demonstrate in plants that tocopherols play a crucial role for growth of plants under outdoor conditions by preventing oxidation of cellular components.  相似文献   

5.
To elucidate influences on the tocopherol biosynthesis in cyanobacteria, wild type and mutant cells of a putative methyltransferase in tocopherol and plastoquinone biosynthesis of Synechocystis sp. PCC 6803 were grown under different conditions. The vitamin E content of cells grown under different light regimes, photomixotrophic or photoautotrophic conditions and varying carbon dioxide supplies were compared by HPLC measurements. The tocopherol levels in wild type cells increased under higher light conditions and low carbon dioxide supply. Photomixotrophic growth led to lower vitamin E amounts in the cells compared to those grown photoautotrophically. We were able to segregate a homozygous deltasll0418 mutant under photoautotrophic conditions. In contrast to former suggestions in the literature the deletion of this gene is not lethal under photomixotrophic conditions and the influence on tocopherol and plastoquinone amounts is diminutive. The methyltransferase encoded by the gene sll0418 is not essential either for tocopherol or plastoquinone synthesis.  相似文献   

6.
7.
Influence of the widely used food additive lecithin on the effectiveness of the inhibiting effect of the natural antioxidants (quercetin, dihydroquercetin, and α-tocopherol) has been studied in dependence on the rate of free radicals generation in the model oxidation reactions. It has been found that during the initiated and autoxidation of methyl oleat, lecithin decreased the antioxidant effectiveness of flavonoids. The effect value increased with the lecithin concentration increase. Under similar conditions while oxidation inhibiting by α-tocopherol and lecithin mixtures, the latter did not influence the tocopherol antioxidant effectiveness (additivity) or led to the increase of the inhibition effectiveness (synergism).  相似文献   

8.
The increased generation of free radicals results in the formation of fluorescent end-products of lipid peroxidation, lipofuscin-like pigments (LFPs). The authors observed that LFPs are generated in rat brain after a normal birth during 5 postnatal days. The experimental design of the study comprised 10 groups of animals. The authors measured prenatal values 1 day and 7 days before birth, and then the animals were sampled on postnatal day 1, 2, 5, 10, 15, 25, 35, and 90. Maximum LFP concentration is achieved on the postnatal day 2. Starting from postnatal day 10, LFP concentration returns to prenatal values. A new rise in LFP concentration is observed at 3 months of age. This is associated with the beginning of the aging process. LFPs were characterized by fluorescence spectroscopy using tridimensional excitation spectra, synchronous spectra and their derivatives, and HPLC with fluorescence detection. It was possible to discern several tens of fluorescent compounds of unknown structure that are generated and metabolized during early development. The authors suggest that LFPs are formed after respiratory burst of microglia phagocytosing apoptotic cells.  相似文献   

9.
Several studies report that hypoxic exposure induces free radical oxidative damage in various tissues. The mechanism of this damage includes membrane lipid peroxidation which can be easily detected by measuring fluorescent end-products of the process, i.e. lipofuscin-like pigments. Four day exposure of rats to hypoxia (10% O(2)) increased the level of lipofuscin-like pigments in erythrocytes up to 9 fold. This increase was completely prevented when the animals were exposed to hypercapnia (4.3% CO(2)) in addition to hypoxia. We studied the possible mechanism of the hypercapnic protection on isolated erythrocyte membranes in vitro. Lipid peroxidation was initiated by incubation of the membranes with iron ions and ascorbate. Production of malonaldehyde, the precursor of lipofuscin-like pigments, was strongly inhibited in bicarbonate buffer. Similarly the production of lipofuscin-like products was damped. These experiments suggest that the protective effect of hypercapnia might consist in direct interaction of CO(2) with free radical processes.  相似文献   

10.
Oxygen‐derived free radicals have been implicated in the pathogenesis of renal injury after ischaemia–reperfusion. Caffeic acid phenethyl ester (CAPE), an active component of propolis extract, exhibits antioxidant properties. To investigate whether treatment with either CAPE or alpha‐tocopherol modifies the levels of the endogenous indices of oxidant stress, we examined their effects on an in vivo model of renal ischaemia–reperfusion injury in rats. CAPE at 10 μmol kg?1 or alpha‐tocopherol at 10 mg kg?1 was administered intraperitoneally before reperfusion. Acute administration of both CAPE and alpha‐tocopherol altered the indices of oxidative stress differently in renal ischaemia–reperfusion injury. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
12.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

13.
We have used random oligonucleotide mutagenesis (or saturation mutagenesis) to create a library of point mutations in the alpha 1 protein domain of a Major Histocompatibility Complex (MHC) molecule. This protein domain is critical for T cell and B cell recognition. We altered the MHC class I H-2DP gene sequence such that synthetic mutant alpha 1 exons (270 bp of coding sequence), which contain mutations identified by sequence analysis, can replace the wild type alpha 1 exon. The synthetic exons were constructed from twelve overlapping oligonucleotides which contained an average of 1.3 random point mutations per intact exon. DNA sequence analysis of mutant alpha 1 exons has shown a point mutant distribution that fits a Poisson distribution, and thus emphasizes the utility of this mutagenesis technique to "scan" a large protein sequence for important mutations. We report our use of saturation mutagenesis to scan an entire exon of the H-2DP gene, a cassette strategy to replace the wild type alpha 1 exon with individual mutant alpha 1 exons, and analysis of mutant molecules expressed on the surface of transfected mouse L cells.  相似文献   

14.
We have isolated and characterized a new yeast mutation in the glucosylation steps of lipid-linked oligosaccharide biosynthesis, alg8-1. Cells carrying the alg8-1 mutation accumulate Glc1Man9GlcNAc2-lipid both in vivo and in vitro. We present evidence showing that the alg8-1 mutation blocks addition of the second alpha 1,3-linked glucose. alg8-1 cells transfer Glc1Man9GlcNAc2 to protein instead of the wild type oligosaccharide, Glc3Man9GlcNAc2. Pulse-chase studies indicate that the Glc1Man9GlcNAc2 transferred is processed more slowly than the wild type oligosaccharide. The yeast mutation gls1-1 lacks glucosidase I activity (Esmon, B., Esmon, P.C., and Schekman, R. (1984) J. Biol. Chem. 259, 10322-10327), the enzyme responsible for removing the alpha 1,2-linked glucose residues from protein-linked oligosaccharides. We demonstrate that gls1-1 cells contain glucosidase II activity (which removes alpha 1,3-linked glucose residues) and have constructed the alg8-1 gls1-1 haploid double mutant. The Glc1Man9GlcNAc2 oligosaccharide was trimmed normally in these cells, demonstrating that the alg8-1 oligosaccharide contained an alpha 1,3-linked glucose residue. A novel Glc2 compound was probably produced by the action of the biosynthetic enzyme that normally adds the alpha 1,2-linked glucose to lipid-linked Glc2Man9GlcNAc2. This enzyme may be able to slowly add alpha 1,2-linked glucose residue to protein-bound Glc1Man9GlcNAc2. The relevance of these findings to similar observations in other systems where glucose residues are added to asparagine-linked oligosaccharides and the possible significance of the reduced rate of oligosaccharide trimming in the alg mutants are discussed.  相似文献   

15.
Type II DNA topoisomerases are ATP-dependent enzymes that catalyze alterations in DNA topology. These enzymes are important targets of a variety of anti-bacterial and anti-cancer agents. We identified a mutation in human topoisomerase II alpha, changing aspartic acid 48 to asparagine, that has the unique property of failing to transform yeast cells deficient in recombinational repair. In repair-proficient yeast strains, the Asp-48 --> Asn mutant can be expressed and complements a temperature-sensitive top2 mutation. Purified Asp-48 --> Asn Top2alpha has relaxation and decatenation activity similar to the wild type enzyme, but the purified protein exhibits several biochemical alterations compared with the wild type enzyme. The mutant enzyme binds both covalently closed and linear DNA with greater avidity than the wild type enzyme. hTop2alpha(Asp-48 --> Asn) also exhibited elevated levels of drug-independent cleavage compared with the wild type enzyme. The enzyme did not show altered sensitivity to bisdioxopiperazines nor did it form stable closed clamps in the absence of ATP, although the enzyme did form elevated levels of closed clamps in the presence of a non-hydrolyzable ATP analog compared with the wild type enzyme. We suggest that the lethality exhibited by the mutant is likely because of its enhanced drug-independent cleavage, and we propose that alterations in the ATP binding domain of the enzyme are capable of altering the interactions of the enzyme with DNA. This mutant enzyme also serves as a new model for understanding the action of drugs targeting topoisomerase II.  相似文献   

16.
We report the identification and characterization of a low tocopherol Arabidopsis thaliana mutant, vitamin E pathway gene5-1 (vte5-1), with seed tocopherol levels reduced to 20% of the wild type. Map-based identification of the responsible mutation identified a G-->A transition, resulting in the introduction of a stop codon in At5g04490, a previously unannotated gene, which we named VTE5. Complementation of the mutation with the wild-type transgene largely restored the wild-type tocopherol phenotype. A knockout mutation of the Synechocystis sp PCC 6803 VTE5 homolog slr1652 reduced Synechocystis tocopherol levels by 50% or more. Bioinformatic analysis of VTE5 and slr1652 indicated modest similarity to dolichol kinase. Analysis of extracts from Arabidopsis and Synechocystis mutants revealed increased accumulation of free phytol. Heterologous expression of these genes in Escherichia coli supplemented with free phytol and in vitro assays of recombinant protein produced phytylmonophosphate, suggesting that VTE5 and slr1652 encode phytol kinases. The phenotype of the vte5-1 mutant is consistent with the hypothesis that chlorophyll degradation-derived phytol serves as an important intermediate in seed tocopherol synthesis and forces reevaluation of the role of geranylgeranyl diphosphate reductase in tocopherol biosynthesis.  相似文献   

17.
The phospholipid composition of various strains of the yeast, Saccharomyces cerevisiae, and several of their derived mitochondrial mutants grown under conditions designed to induce variations in the complement of mitochondrial membranes has been examined. Wild type and petite (cytoplasmic respiratory deficient) yeasts were fractionated into various subcellular fractions, which were monitored by electron microscopy and analyzed for cytochrome oxidase (in wild type) and phospholipid composition. 90% or more of the phospholipid, cardiolipin was found in the mitochondrial membranes of wild type and petite yeast. Cardiolipin content differed markedly under various growth conditions. Stationary yeast grown in glucose had better developed mitochondria and more cardiolipin than repressed log phase yeast. Aerobic yeast contained more cardiolipin than anaerobic yeast. Respiration-deficient cytoplasmic mitochondrial mutants, both suppressive and neutral, contained less cardiolipin than corresponding wild types. A chromosomal mutant lacking respiratory function had normal cardiolipin content. Log phase cells grown in galactose and lactate, which do not readily repress the development of mitochondrial membranes, contained as much cardiolipin as stationary phase cells grown in glucose. Cytoplasmic mitochondrial mutants respond to changes in the glucose concentration of the growth medium by variations in their cardiolipin content in the same way as wild type yeast does under similar growth conditions. It is concluded that cardiolipin content of yeast is correlated with, and is a good indicator of, the state of development of mitochondrial membrane.  相似文献   

18.
  • 1.1. The carnitine-responsive mutant yeast, Candida pintolopesii ATCC 26014 and the wild type strain (ATCC 22987) were used to investigate the role of carnitine and the carnitine acetyltransferase system.
  • 2.2. [3H]l-Carnitine, supplied to the cells, was incorporated into acetylcamitine and [14C]pantothenate was incorporated into CoA and its derivatives.
  • 3.3. Both bioautography and quantitative assays indicated that the relative amounts of CoA and acetylCoA were very different in the mutant and wild type cells.
  • 4.4. The wild type yeast maintained an acetylCoA/CoA ratio of 0.33 ± 0.09 indicating that most of the CoA in the cell is in the free CoA form. Carnitine was not required to establish this ratio nor did its presence lower it further.
  • 5.5. In contrast, the mutant cells contained a high acetylCoA/CoA ratio (12.8 ± 3.0).
  • 6.6. In the mutant cells, carnitine lowered the ratio by decreasing the intracellular acetylCoA concentration and releasing free CoA.
  • 7.7. These data indicated that wild type yeast possess an effective mechanism that is not related to the CAT system for regulating the acetylCoA/CoA ratio.
  • 8.8. This mechanism appears to be lacking in the mutant. The CAT system decreased the acetylCoA/CoA ratio in the mutant cells but not to the value which is found in the wild type strain.
  • 9.9. In both stains of Candida pintolopesii, in the presence of carnitine, an acetylcamitine pool can be created whose concentration exceeds that of acetylCoA.
  • 10.10. The intracellular apparent equilibrium constant (Kapp) for carnitine acetyltransferase for wild type Candida pintolopesii ATCC 22987 was 0.73 ± 0.12, close to the established value of 0.6, indicating that the CAT system ran close to equilibrium.
  • 11.11. The Kapp for the CAT system of the carnitine-responsive mutant yeast was 7.7 ± 1.7 indicating that this reaction was not at equilibrium.
  相似文献   

19.
Dipeptidylpeptidase IV (DPP-IV) is a well-documented drug target for the treatment of type 2 diabetes. Hepatocyte nuclear factors (HNF)-1alpha and HNF-1beta, known as the causal genes of MODY3 and MODY5, respectively, have been reported to be involved in regulation of DPP-IV gene expression. But, it is not completely clear (i) that they play roles in regulation of DPP-IV gene expression, and (ii) whether DPP-IV gene activity is changed by mutant HNF-1alpha and mutant HNF-1beta in MODY3 and MODY5. To explore these questions, we investigated transactivation effects of wild HNF-1alpha and 13 mutant HNF-1alpha, as well as wild HNF-1beta and 2 mutant HNF-1beta, on DPP-IV promoter luciferase gene in Caco-2 cells by means of a transient experiment. Both wild HNF-1alpha and wild HNF-1beta significantly transactivated DPP-IV promoter, but mutant HNF-1alpha and mutant HNF-1beta exhibited low transactivation activity. Moreover, to study whether mutant HNF-1alpha and mutant HNF-1beta change endogenous DPP-IV enzyme activity, we produced four stable cell lines from Caco-2 cells, in which wild HNF-1alpha or wild HNF-1beta, or else respective dominant-negative mutant HNF-1alphaT539fsdelC or dominant-negative mutant HNF-1betaR177X, was stably expressed. We found that DPP-IV gene expression and enzyme activity were significantly increased in wild HNF-1alpha cells and wild HNF-1beta cells, whereas they decreased in HNF-1alphaT539fsdelC cells and HNF-1betaR177X cells, compared with DPP-IV gene expression and enzyme activity in Caco-2 cells. These results suggest that both wild HNF-1alpha and wild HNF-1beta have a stimulatory effect on DPP-IV gene expression, but that mutant HNF-1alpha and mutant HNF-1beta attenuate the stimulatory effect.  相似文献   

20.
Sodium nitroprusside (SNP) and S-nitrosoglutathione (GSNO) were used as a source of exogenous nitric oxide (NO) to investigate their effects on biochemical parameters and antioxidant enzyme response in leaves of wild type Columbia and tocopherol-deficient vte4 and vte1 mutant lines of Arabidopsis thaliana plants and possible tocopherol involvement in regulation of antioxidant response under NO-induced stress. SNP enhanced the activity of the enzymes, that scavenge hydrogen peroxide in leaves of all studied lines, and increased glutathione reductase and glutathione-S-transferase activity there. In addition, it decreased the intensity of lipid peroxidation in vte1 mutant line leaves. At the same time, GSNO increased the levels of protein carbonyls and inactivated enzymes ascorbate peroxidase, guaiacol peroxidase and dehydroascorbate reductase in almost all investigated plant lines. In contrast to wild type, GSNO increased superoxide dismutase activity and decreased catalase activity and chlorophyll a/b ratio in the leaves of two mutant lines. It can be assumed that tocopherols in some way are responsible for plant protection against NO-induced stress. However the mechanisms of this protection remain unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号