首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The rate constant for the hydrolysis of prostacyclin (PGI2) to 6-keto-PGF was measured by monitoring the UV spectral change, over a pH range 6 to 10 at 25°C and the total ionic strength of 0.5 M. The first-order rate constant (kobs) extrapolated to zero buffer concentration follows an expression, kobs = kH+ (H+), where kH+ is a second-order rate constant for the specific acid catalyzed hydrolysis. The value of kH+ obtained (3.71 × 104 sec−1 M−1) is estimated approximately 700-fold greater than a kH+ value expected from the hydrolysis of other vinyl ethers. Such an unusually high reactivity of PGI2 even for a vinyl ether is attributed to a possible ring strain release that would occur upon the rate controlling protonation of C5. A Brønsted slope (α) of 0.71 was obtained for the acid (including H3O+) catalytic constants, from which a pH independent first-order rate constant for the spontaneous hydrolysis (catalyzed by H2O as a general acid) was estimated to be 1.3 × 10−6 sec−1. An apparent activation energy (Ea) of 11.85 Kcal/mole was obtained for the hydrolysis at pH 7.48, from which a half-life of PGI2 at 4°C was estimated to be approximately 14.5 min. when the total phosphate concentration is 0.165 M (cf. 3.5 min. at 25°C).  相似文献   

2.
The kinetics of azide binding to chloroperoxidase have been studied at eight pH values ranging from 3.0 to 6.6 at 9.5 +/- 0.2 degrees C and ionic strength of 0.4 M in H2O. The same reaction was studied in D2O at pD 4.36. In addition, results were obtained on azide binding to horseradish peroxidase at pD 4.36 and pH 4.56. Typical relaxation times were in the range 10-40 microseconds. The value of kH/kD(on) for chloroperoxidase is 1.16, and kH/kD(off) is 1.7; corresponding values for horseradish peroxidase are 1.10 and 2.4. The H/D solvent isotope effects indicate proton transfer is partially rate controlling and is more important in the dissociation of azide from the enzyme-ligand complex. A mechanism is proposed in which hydrazoic acid binds to chloroperoxidase in a concerted process in which its proton is transferred to a distal basic group. Hydrogen bonding from the newly formed distal acid to the bound azide facilitates formation of hydrazoic acid as the leaving group in the dissociation process. The binding rate constant data, kon, can be fit to the equation kon = k3/(1 + KA/[H+]), where k3 = 7.6 X 10(7) M-1 S-1 and KA, the dissociation constant of hydrazoic acid, is 2.5 X 10(-5) M. The same mechanism probably is valid for the ligand binding to horseradish peroxidase.  相似文献   

3.
Kinetics of trypsin association with trypsin inhibitor from colostrum (IC) was studied. The association rate constant is 3-10-5 M- minus 1 sec- minus 1 at pH 7,8, 25 degrees C. The rate constant for the complex dissociation was determined from the kinetics of the IC displacement from the complex with trypsin by a specific substrate and was found to be 5-10- minus 6 sec- minus 1 (pH 7,8; 25 degrees C). The equilibrium constant (Ki) was measured in a special experiment and was equal to 4-10- minus 12 M (p H 7,8; 25 degrees C). The similarity of this reaction and the association of trypsin with other protein inhibitors was discussed.  相似文献   

4.
The pre-steady-state ATPase activity of nitrogenase has been reinvestigated. The exceptionally high burst in the hydrolysis of MgATP by the nitrogenase from Azotobacter vinelandii communicated by Cordewener et al. (1987) [Cordewener J., ten Asbroek A., Wassink H., Eady R. R., Haaker H. & Veeger C. (1987) Eur. J. Biochem. 162, 265-270] was found to be caused by an apparatus artefact. A second possible artefact in the determination of the stoichiometry of the pre-steady-state ATPase activity of nitrogenase was observed. Acid-quenched mixtures of dithionite-reduced MoFe or Fe protein of Azotobacter vinelandii nitrogenase and MgATP contained phosphate above the background level. It is proposed that due to this reaction, quenched reaction mixtures of nitrogenase and MgATP may contain phosphate in addition to the phosphate released by the ATPase activity of the nitrogenase complex. It was feasible to monitor MgATP-dependent pre-steady-state proton production by the absorbance change at 572 nm of the pH indicator o-cresolsulfonaphthalein in a weakly buffered solution. At 5.6 degrees C, a pre-steady-state phase of H+ production was observed, with a first-order rate constant of 2.2 s-1, whereas electron transfer occurred with a first-order rate constant of 4.9 s-1. At 20.0 degrees C, MgATP-dependent H+ production and electron transfer in the pre-steady-state phase were characterized by observed rate constants of 9.4 s-1 and 104 s-1, respectively. The stopped-flow technique failed to detect a burst in the release of protons by the dye-oxidized nitrogenase complex. It is concluded that the hydrolysis rate of MgATP, as judged by proton release, is lower than the rate of electron transfer from the Fe protein to the MoFe protein.  相似文献   

5.
In 40% ethylene glycol, gamma/2 = 0.11 and pH* 8.2, fructose 1,6-bisphosphate aldolase from rabbit muscle undergoes a transition: above 3 degrees C it displays 4 equivalent dihydroxyacetone phosphate binding sites, below -1 degree C the sites decrease to 2. The dissociation constant of the aldolase-dihydroxyacetone phosphate complex decreases from 10 microM at 3 degrees C to 2.65 microM at -1 degree C, its van't Hoff plot being linear between -1 degree C and -13 degrees C. The rate of the detritiation of the aldolase-(3S)-[3-3H]dihydroxyacetone phosphate complex is strongly influenced by temperature. In 40% ethylene glycol, gamma/2 = 0.01 and pH* 8.2, the apparent rate constant is 7.6 sec-1 at -5 degrees C and 0.012 sec-1 at -24 degrees C. The Arrhenius plot is linear between -5 degrees C and -24 degrees C.  相似文献   

6.
The hydrolysis of 4-nitrophenyl acetate by metal complexes Co(en)2(imH)H2O3+, Co(en)2(bzmH)H2O3+, and Co(en)2(imCH3)H2O3+ (imH = imidazole, bzmH = benzimodazole, imCH3 = methyl imidazole) has been investigated in the pH range 5.4-8.9. The small difference in nucleophilic reactivity in the pH range 5.4-6.7 is assumed to be due to hydrogen bonding abilities of the imidazole and substituted imidazole ligands and small pKa differences (k2(imH) = 2.2 X 10(-2) M-1 sec-1, k2(bzmH) = 5.68 X 10(-2) M-1 sec-1, k2(imCH3) = 1.35 X 10(-2) M-1 sec-1, 40 degrees C, 1 = 0.3 NaClO4, pKa(imH) = 6.2, pKa(imCH3) = 6.2 and pKa(bzmH) = 5.9). In the pH range 7.8-8.9, the differences in nucleophilic reactivity (k3(imH) = 85.5 X 10(-2) M-1 sec-1, k3(bzmH) = 33.4 X 10(-2) M-1 sec-1, 40 degrees C, I = 0.3 NaClO4) are reconciled with a significant steric factor outweighing the acidity of the benzimidazole complex. In the pH region 6.7-7.7, the deviation from linearity is presumably due to both hydroxo and imido ligands functioning as nucleophiles, the latter being about 40 times stronger than the former.  相似文献   

7.
Electron-capture gas-liquid chromatography was used to study the spontaneous hydrolysis of heroin in phosphate buffer (pH 6.4 and pH 7.4) at 23 degrees C. Aliquots of solution were taken over a 24-h period. After extraction at pH 8.9 into propan-2-ol (10%)-ethyl acetate, deacetylated products were made into hepafluorobutyrate derivatives which were analyzed quantitatively using nalorphine as the internal standard. Heroin decomposes to 06-monoacetylmorphine (06-MAM) under these conditions. Further decomposition to morphine was not observed. Spontaneous hydrolysis was faster at pH 7.4 (first-order rate constant, 9.6 x 10-5 min-1) than at pH 6.4 (first-order rate constant, 3.0 x 10-5 min-1). In 24 h, the decomposition to 06-MAM was 13 and 4%, respectively.  相似文献   

8.
M W Washabaugh  W P Jencks 《Biochemistry》1988,27(14):5044-5053
Rate constants for C(2)-proton exchange from thiamin, N(1')-methylthiamin, and several 3-substituted-4-methylthiazolium ions catalyzed by D2O and deuterioxide ion were determined by 1H NMR at 30 degrees C and ionic strength 2.0 M. Values of pKa for the thiazolium ions, including thiamin itself, were found to be in the range pKa = 17-19; the pKa values for N(1')-protonated thiamin and free thiamin C(2)-H in H2O are 17.7 and 18.0, respectively. The pKa value for N(1')-protonated thiamin was calculated from the observed rate constant for the pD-independent reaction with D2O after correction for a secondary solvent deuterium isotope effect of kH2O/kD2O = 2.6. The pKa value for free thiamin was calculated from the rate constant for catalysis by OD- after correction by a factor of 3.3 = 8/2.4 for an 8-fold negative deviation of kOD from the Br?nsted plot of slope 1.0 for general base catalysis and a secondary solvent isotope effect of kOD/kOH = 2.4. Values of k-a = 2 X 10(10) and 3 X 10(9) M-1 s-1 were assumed for diffusion-controlled protonation of the C(2) ylide in the reverse direction by H3O+ and H2O, respectively. The Hammett rho I value for the exchange reaction catalyzed by deuterioxide ion or D2O is 8.4 +/- 0.2. There is no positive deviation of the rate constants for free or N(1')-substituted thiamin analogues in either Hammett correlation. This shows that the aminopyrimidinyl group does not provide significant intramolecular catalysis of nonenzymic C(2)-proton removal in the coenzyme.  相似文献   

9.
Hyaluronic acid (HA) was hydrolyzed using varying temperatures (40, 60, and 80 degrees C) and acid concentrations (0.0010, 0.010, 0.10, 0.50, 1.0, and 2.0 M HCl). The degradation process was monitored by determination of weight average molecular weight ( M w) by size-exclusion chromatography with online multiangle laser light scattering, refractive index, and intrinsic viscosity detectors (SEC-MALLS-RI-visc) on samples taken out continuously during the hydrolysis. SEC-MALLS-RI-visc showed that the degradation gave narrow molecular weight distributions with polydispersity indexes ( M w/ M n) of 1.3-1.7. Kinetic plots of 1/ M w versus time gave linear plots showing that acid hydrolysis of HA is a random process and that it follows a first order kinetics. For hydrolysis in HCl at 60 and 80 degrees C, it was shown that the kinetic rate constant ( k h) for the degradation depended linearly on the acid concentration. Further, the dependence of temperature on the hydrolysis in 0.1 M HCl was found to give a linear Arrhenius plot (ln k h vs 1/ T), with an activation energy ( E a) of 137 kJ/mol and Arrhenius constant ( A) of 7.86 x 10 (15) h (-1). (1)H NMR spectroscopy was used to characterize the product of extensive hydrolysis (48 h at 60 degrees C in 0.1 M HCl). No indication of de- N-acetylation of the N-acetyl glucosamine (GlcNAc) units or other byproducts were seen. Additionally, a low molecular weight HA was hydrolyzed in 0.1 M DCl for 4 h at 80 degrees C. It was shown that it was primarily the beta-(1-->4)-linkage between GlcNAc and glucuronic acid (GlcA) that was cleaved during hydrolysis at pH < p K a,GlcA. The dependence of the hydrolysis rate constant was further studied as a function of pH between -0.3 and 5. The degradation was found to be random (linear kinetic plots) over the entire pH range studied. Further, the kinetic rate constant was found to depend linearly on pH in the region -0.3 to 3. Above this pH (around the p K a of HA), the kinetic constant decreased more slowly, probably due to either a change in polymer conformation or due to an increased affinity for protons due to the polymer becoming charged as the GlcA units dissociated.  相似文献   

10.
The complete time course of the hydrolysis of p-nitrophenyl phosphate catalyzed by the low molecular weight (acid) phosphotyrosyl protein phosphatase from bovine heart was elucidated and analyzed in detail. Burst titration kinetics were demonstrated for the first time with this class of enzyme. At pH 7.0, 4.5 degrees C, a transient pre-steady-state "burst" of p-nitrophenol was formed with a rate constant of 48 s-1. The burst was effectively stoichiometric and corresponded to a single enzyme active site/molecule. The burst was followed by a slow steady-state turnover of the phosphoenzyme intermediate with a rate constant of 1.2 s-1. Product inhibition studies indicated an ordered uni-bi kinetic scheme for the hydrolysis. Partition experiments conducted for several substrates revealed a constant product ratio. Vmax was constant for these substrates, and the overall rate of hydrolysis was increased greatly in the presence of alcohol acceptors. An enzyme-catalyzed 18O exchange between inorganic phosphate and water was detected and occurred with kcat = 4.47 x 10(-3) s-1 at pH 5.0, 37 degrees C. These results were all consistent with the existence of a phosphoenzyme intermediate in the catalytic pathway and with the breakdown of the intermediate being the rate-limiting step. The true Michaelis binding constant Ks = 6.0 mM, the apparent Km = 0.38 mM, and the rate constants for phosphorylation (k2 = 540 s-1) and dephosphorylation (k3 = 36.5 s-1) were determined under steady-state conditions with p-nitrophenyl phosphate at pH 5.0 and 37 degrees C in the presence of phosphate acceptors. The energies of activation for the enzyme-catalyzed hydrolysis at pH 5.0 and 7.0 were 13.6 and 14.1 kcal/mol, respectively. The activation energy for the enzyme-catalyzed medium 18O exchange between phosphate and water was 20.2 kcal/mol. Using the available equilibrium and rate constants, an energetic diagram was constructed for the enzyme-catalyzed reaction.  相似文献   

11.
The kinetics of the recombination of the metal-depleted active site of horse liver alcohol dehydrogenase (LADH) with metal ions have been studied over a range of pH and temperature. The formation rates were determined optically, by activity measurements, or by using the pH change during metal incorporation with a pH-indicator as monitor. The binding of Zn2+, Co2+, and Ni2+ ions occurs in a two-step process. The first step is a fast equilibrium reaction, characterized by an equilibrium constant K1. The spectroscopic and catalytic properties of the native or metal-substituted protein are recovered in a slow, monomolecular process with the rate constant k2. The rate constants k2 5.2 X 10(-2) sec-1 (Zn2+), 1.1 X 10(-3) sec-1 (Co2+), and 2 X 10(-4) sec-1 (Ni2+). The rate constants increase with increasing pH. Using temperature dependence, the activation parameters for the reaction with Co2+ and Ni2+ were determined. Activation energies of 51 +/- 2.5 kJ/mol (0.033 M N-Tris-(hydroxymethyl)methyl-2-aminomethane sulfonic acid (TES), pH 6, 9) for Co2+ and 48.5 +/- 4 kJ/mol (0.033 M TES, pH 7, 2) for Ni2+ at 23 degrees C were found. The correspondent activation entropies are - 146 +/- 10 kJ/mol K for Co2+ and - 163 +/- 9 kJ/mol K for Ni2+. Two protons are released during the binding of Zn2+ to H4Zn(n)2 LADH in the pH range 6.8-8.1. The binding of coenzyme, either reduced or oxidized, prevents completely the incorporation of metal ions, suggesting that the metal ions enter the catalytic site via the coenzyme binding domain and not through the hydrophobic substrate channel.  相似文献   

12.
The kinetics of formation and dissociation of mono and bis complexes of Zn(II) with reduced glutathione (H4L+ = fully protonated form) were studied in aqueous solution at 25.0 +/- 0.1 degrees C and ionic strength 0.30 M (NaNO3) in the pH range 4.58 to 4.98 by temperature-jump. The reaction was found to proceed via two different mechanisms depending on degree of ligand protonation. In both cases, complex formation is predominantly if not completely through the sulfur. Reaction with the form HL-2 (only the amino nitrogen protonated), the dominant form of this species, proceeds by the expected rat limiting water loss (dissociative or Eigen) mechanism with rate constants of 9.3 X 10(7) M-1 sec-1 (+/- 24%) for mono and 5.1 X 10(7) M-1 sec-1 (+/- 25%) for bis complex formation. Reaction with H2L--(sulfur protonated) yields rate constants of 3.9 X 10(3) M-1 sec-1 (+/- 43%) for mono and 1.95 X 10(3) M-1 sec-1 (+/- 43%) for bis complex formation. The decrease in rate constant is attributed to blockage of the complexing site on reduced glutathione by intramolecular hydrogen bonding, with proton removal being the rate determining step.  相似文献   

13.
The rate constants and delta H degrees for the non-cooperative dimeric Busycon myoglobin are: oxygen, k' = 4.75 X 10(7) M-1 sec-1, k = 71 sec-1, and CO, l'= 3.46 X 10(5) M-1 sec-1, l = 0.0052 sec-1 at 20 degrees C, pH 7, delta H degrees = -3 kcal/mol for O2 and CO.2. Log-log plots of k vs K for oxygen and of l' vs L for CO binding for numerous non-cooperative hemoglobins and myoglobins point to a large steric influence of the protein on heme ligation reactions. Many of the proteins behave as "R" state for one ligand, but "T" for the other.  相似文献   

14.
E S Lightcap  C J Halkides  P A Frey 《Biochemistry》1991,30(42):10307-10313
mu-Monothiopyrophosphate (MTP) binds monovalent and divalent metal ions with dissociation constants (Kd) similar to those for pyrophosphate (PPi). The values of Kd for metal-MTP complexes are the following, as measured kinetically in the hydrolysis of MTP (microM): Mg2+, 32 +/- 4; Mn2+, 5.4 +/- 1.4; and Co2+, 27 +/- 15. The thermodynamically measured (EPR) values for Mg2+ and Co2+ are 28 +/- 13 microns and 11 +/- 4 microM, respectively; and the Kd for the complex MnPPi is 3.4 +/- 0.5 microM. The metal-MTP complexes undergo hydrolysis at rates modestly faster or slower than the rate at which MTP itself reacts. The complexes MgMTP2-, CoMTP2-, and MnMTP2- undergo hydrolytic cleavage with release of thiophosphate with observed first-order rate constants of 1.6 x 10(-2) min-1, 2.3 x 10(-2) min-1, and 0.6 x 10(-2) min-1, respectively, at 35 degrees C, compared with 1.1 x 10(-2) min-1 for MTP4- under the same conditions. Alkali metal cations also stimulate or retard the hydrolysis of MTP. At 25 degrees C and pH 12.2, the observed rate constant for tetramethylammonium MTP4- is 2.1 x 10(-3) min-1, and the estimated rate constants (min-1) for saturating alkali metals under the same conditions are as follows: Li+, 0.25 x 10(-3); Na+, 3.9 x 10(-3), K+, 6.7 x 10(-3); and Cs+, 6.7 x 10(-3). Divalent metal ions markedly retard the hydrolysis of MTP at pH 7 and 8 because complexation shifts the pH rate profile more than 2 pH units toward the acid side.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The mechanism of the Mg2+-dependent myosin subfragment 1 catalyzed hydrolysis of GTP and 2-amino-6-mercapto-9-beta-ribofuranosylpurine 5'-triphosphate (thioGTP) has been investigated by rapid-reaction techniques. The myosin was isolated from rabbit skeletal muscle. The steady-state intermediate of these reactions consists pre-dominantly of a protein-substrate complex unlike the myosin subfragment 1 ATPase reaction which has a protein-products complex as the principal steady-state component. The mechanism of GTP hydrolysis catalyzed by subfragment 1 has other marked differences from the ATPase mechanism. The second-order rate constant of binding of GTP to subfragment 1 is tenfold greater than that for GDP binding. The dissociation rate constant of GDP from subfragment 1 is 0.06 s-1 compared with the subfragment 1 catalytic center activity for GTP hydrolysis of 0.5 s-1 at pH 8.0 and 20 degrees C. This shows that GDP bound to subfragment 1 forms a complex which is not kinetically competent to be an intermediate of the GTPase mechanism. GDP is hydrolyzed in the presence of subfragment 1 to GMP and Pi. The subfragment 1 GTPase mechanism has a nuber if features in common with that of the elongation factor Tu GTPase of the protein biosynthetic system of Escherichia coli.  相似文献   

16.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

17.
The kinetics of binding and hydrolysis of ATP by bovine cardiac myosin subfragment 1 has been reinvestigated. More than 90% of the total fluorescence amplitude associated with ATP hydrolysis occurs with an apparent second-order rate constant of 8.1 X 10(5) M-1 S-1 and a limiting rate constant of approximately 140 S-1 (100 mM KCl, 50 mM 1,3-bis-[tris(hydroxymethyl)methylamino]-propane, 10 mM MgCl2, pH 7.0, 20 degrees C); the remaining 10% occurs more slowly (approximately 1 S-1). The observed rate constants are independent of subfragment 1 concentration under pseudo first-order conditions for ATP with respect to protein. The fraction of protein which hydrolyzes ATP rapidly is not a function of the nucleotide or protein concentration and appears to be constant irrespective of ionic strength or temperature within the range studied (50-100 mM KCl, pH 7.0, 15-20 degrees C). These data are compared to that obtained previously using subfragment 1 prepared by a different method which showed ATP-dependent aggregation of two protein species.  相似文献   

18.
The kinetics of electron transfer between Fe(EDTA)2- and meso-tetra sulphonated phenyl porphyrin iron(III)-apomyoglobin have been studied by applying stopped-flow mixing and monitoring photometric changes at soret band (429 nm). The studies were carried out at pH's 6, 6.5, 7, 7.5, and 8 and at temperature between 10 and 40 degrees C. The mechanism proposed on the basis of the dependence of kobsd on Fe(EDTA)2- concentrations at various pH's, followed the rate equation: kobsd = ka[H+] + Kakb/[H+] + Ka.[Fe(EDTA)2-] The values of rate parameters calculated using a weighted non-linear least-squares analysis were: ka, 528 +/- 2 sec-1; kb, 25 +/- 1 sec-1; and Ka, 2.0 +/- 0.1 microM at 25 degrees C and 0.5 M sodium phosphate, and those of thermodynamic parameters calculated by the Eyring equation were: delta H*, 8.1 +/- 0.3 kcal mole-1 and delta S*, -23.4 +/- 1.1 eu at pH 7 and 0.5 M sodium phosphate.  相似文献   

19.
H Yoshida  H Hanazawa 《Biochimie》1989,71(5):687-692
Ribonuclease (RNase) F1 was inactivated by incubation with an excess amount of iodoacetate at pH 5.5, 37 degrees C according to pseudo first-order kinetics. It was protected to various degrees, from inactivation by nucleotides, among which guanosine 2'-phosphate was most effective. The pseudo first-order rate constant was proportional to the reagent concentration, indicating that the reaction in reality follows second-order kinetics. The second-order rate constant was determined to be 25 x 10(-4) M-1 s-1. The inactivation rate was maximal at pH 5.5-6.0. When iodo[2-14C]acetate was used as the reagent, the stoichiometry of incorporation was determined to be 1.1 mol carboxymethyl group per mol of RNase F1 and glutamic acid residue 58 was assigned as the site of modification.  相似文献   

20.
Transhydrogenase is a proton pump. It has three components: dI and dIII protrude from the membrane and contain the binding sites for NAD(H) and NADP(H), respectively, and dII spans the membrane. We have expressed dIII from Homo sapiens transhydrogenase (hsdIII) in Escherichia coli. The purified protein was associated with stoichiometric amounts of NADP(H) bound to the catalytic site. The NADP+ and NADPH were released only slowly from the protein, supporting the suggestion that nucleotide-binding by dIII is regulated by the membrane-spanning dII. HsdIII formed a catalytically active complex with recombinant dI from Rhodospirillum rubrum (rrdI), even in the absence of dII. The rates of forward and reverse transhydrogenation catalysed by this complex are probably limited by slow release from dIII of NADPH and NADP+, respectively. The hybrid complex also catalysed high rates of 'cyclic' transhydrogenation, indicating that hydride transfer, and exchange of nucleotides with dI, are rapid. Stopped-flow experiments revealed a rapid, monoexponential, single-turnover burst of reverse transhydrogenation in pre-steady-state. The apparent first-order rate constant of the burst increased with the concentration of rrdI. A deuterium isotope effect (kH/kD approximately 2 at 27 degrees C) was observed when [4B-1H]NADPH was replaced with [4B-2H]NADPH. The characteristics of the burst of transhydrogenation with rrdI:hsdIII differed from those previously reported for rrdI:rrdIII (J.D. Venning et al., Eur. J. Biochem. 257 (1998) 202-209), but the differences are readily explained by a greater dissociation constant of the hybrid complex. The steady-state rate of reverse transhydrogenation by the rrdI:hsdIII complex was almost independent of pH, but there was a single apparent pKa ( approximately 9.1) associated with the cyclic reaction. The reactions of the dI:dIII complex probably proceed independently of those protonation/deprotonation reactions which, in the complete enzyme, are associated with H+ translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号