首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of the chloramphenicol acetyltransferase gene cat-86 in Bacillus subtilis results from the activation of translation of cat-86 mRNA. The inducers, chloramphenicol and amicetin, are thought to enable ribosomes to destabilize a stem-loop structure in cat-86 mRNA that sequesters the ribosome binding site for the cat-86 coding sequence, designated RBS-3. The region of cat-86 mRNA which is 5' to the stem-loop contained two additional ribosome binding sites, RBS-1 and RBS-2, located 84 and 56 nucleotides, respectively, upstream from RBS-3. RBS-1 and RBS-2 were each followed by a potential translation initiation codon and a short open reading frame. Bal 31-generated deletions into the 5' end of the regulatory region that removed RBS-1 but did not enter RBS-2 caused a fourfold decrease in the uninduced and chloramphenicol-induced level of cat-86 expression and a more than 10-fold reduction in the amicetin-induced level of expression. Deletions that removed both RBS-1 and RBS-2 but did not enter the stem-loop abolished both chloramphenicol- and amicetin-inducible expression. These data indicate that RBS-2 and sequences 3' to RBS-2 are minimally essential to chloramphenicol induction. However, the presence of RBS-1 in the mRNA elevated the maximum level of expression obtained during chloramphenicol induction. These studies also demonstrate that induction of cat-86 by amicetin is highly dependent on RBS-1. To determine whether a correlation existed between RBS-1 and amicetin inducibility, we examined the sequence of the regulatory regions for two natural variants of cat-86, cat-66 and cat-57, which are chloramphenicol inducible but are very poorly induced by amicetin. Both contained nucleotide sequence differences from cat-86 in the vicinity of RBS-1 that would prevent translation of the leader peptide associated with RBS-1 in cat-86. In contrast, the regulatory regions got the three genes were virtually identical in the vicinity of RBS-2. These data indicate that efficient induction by amicetin requires sequences that are not essential for induction by chloramphenicol.  相似文献   

2.
The plasmid gene cat-86 and the cat gene resident on pC194 each encode chloramphenicol-inducible chloramphenicol acetyltransferase activity in Bacillus subtilis. Chloramphenicol induction has been proposed to result from chloramphenicol binding to ribosomes, which then permits the drug-modified ribosomes to perform events essential to induction. If this proposal were correct, B. subtilis mutants containing chloramphenicol-insensitive ribosomes should not permit chloramphenicol induction of either cat-86 or pC194 cat. However, we and others have been unable to isolate chloramphenicol-resistant ribosomal mutants of B. subtilis 168. We therefore developed a simple procedure for screening other antibiotics for the potential to induce cat-86 expression. One antibiotic, amicetin, was found to be an effective inducer of cat-86 but not of the cat gene on pC194. Amicetin and chloramphenicol each interact with the 50S ribosomal subunit, and the mechanism of cat-86 induction by both drugs may be similar. Amicetin-resistant mutants of B. subtilis were readily isolated, and in none of six mutants tested was cat-86 detectably inducible by amicetin, although the chloramphenicol-inducible phenotype was retained. The ami-1 mutation which is present in one of these amicetin-resistant mutants was mapped by PBS1 transduction to the "ribosomal gene cluster" adjacent to cysA. Additionally, ribosomes from cells harboring the ami-1 mutation contained an altered BL12a protein, as detected in two-dimensional polyacrylamide gel electrophoresis. Lastly, an in vitro protein-synthesizing system that uses ribosomes from an ami-1-containing cell line was more resistant to amicetin than a system that uses ribosomes from an amicetin-sensitive but otherwise isogenic strain. These results indicate that the host mutation, ami-1, which effectively abolished the inducibility of cat-86 by amicetin, altered a ribosomal component.  相似文献   

3.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   

4.
5.
The plasmid gene cat-86 specifies chloramphenicol-inducible chloramphenicol acetyltransferase in Bacillus subtilis. This gene, like the erythromycin-inducible erm genes, is regulated by translational attenuation. Here we show that cat-86 is also inducibly regulated by erythromycin. cat-86 does not confer resistance to erythromycin.  相似文献   

6.
The chloramphenicol acetyltransferase gene cat-86 is induced through a mechanism that is a variation of classical attenuation. Induction results from the destabilization of an RNA stem-loop that normally sequesters the cat-86 ribosome-binding site. Destabilization of the stem-loop is due to the stalling of a ribosome in the leader region of cat-86 mRNA at a position that places the A site of the stalled ribosome at leader codon 6. Two events can stall ribosomes at the correct location to induce cat-86 translation: addition of chloramphenicol to cells and starvation of cells for the amino acid specified by leader codon 6. Induction by amino acid starvation is an anomaly because translation of the cat-86 coding sequence requires all 20 amino acids. To explain this apparent contradiction we postulated that amino acid starvation triggers intracellular proteolysis, thereby providing levels of the deprived amino acid sufficient for cat-86 translation. Here we show that a mutation in relA, the structural gene for stringent factor, blocks intracellular proteolysis that is normally triggered by amino acid starvation. The relA mutation also blocks induction of cat-86 by amino acid starvation, but the mutation does not interfere with chloramphenicol induction. Induction by amino acid starvation can be demonstrated in relA mutant cells if the depleted amino acid is restored at very low levels (e.g., 2 micrograms/ml). A mutation in relC, which may be the gene for ribosomal protein L11, blocks induction of cat-86 by either chloramphenicol or amino acid starvation. We believe this effect is due to a structural alteration of the ribosome resulting from the relC mutation and not to the relaxed phenotype of the cells.  相似文献   

7.
8.
9.
10.
11.
J Laredo  V L Wolff  P S Lovett 《Gene》1988,73(1):209-214
Gene cat-86 is chloramphenicol (Cm)-inducible and specifies Cm acetyltransferase, CAT-86. The gene was previously cloned from the DNA of a strain of Bacillus pumilus. In the present study we report the construction of a constitutively expressed version of cat-86 that permits high-level expression of the gene on a plasmid in B. subtilis. A method is described that allows very rapid purification of CAT-86 protein to homogeneity. The sequence of 13 N-terminal amino acids of purified CAT-86, as well as the 26.6-kDa size of the subunit protein, agree with predictions made based on the nucleotide sequence of the gene. The Mr of the native enzyme suggests that CAT-86 is a trimer consisting of three identical protein subunits. Our studies demonstrate that cat-86 provides a convenient system for analyzing relationships between a gene and a multimeric enzyme in the B. subtilis background.  相似文献   

12.
13.
14.
catA86 is the second gene in a constitutively transcribed, two-gene operon cloned from Bacillus pumilus . The region that intervenes between the upstream gene, termed the leader, and the catA86 coding sequence contains a pair of inverted repeat sequences which cause sequestration of the catA86 ribosome binding site in mRNA secondary structure. As a consequence, the catA86 coding sequence is untranslatable in the absence of inducer. Translation of the catA86 coding sequence is induced by chloramphenicol in Gram-positives and induction requires a function of the leader coding sequence. The leader-encoded peptide has been proposed to instruct its translating ribosome to pause at leader codon 6, enabling chloramphenicol to stall the ribosome at that site. Ribosome stalling causes destabilization of the RNA secondary structure, exposing the catA86 ribosome binding site, allowing activation of its translation. A comparable mechanism of induction by chloramphenicol has been proposed for the regulated cmlA gene from Gram-negative bacteria. The catA86 and cmlA leader-encoded peptides are in vitro inhibitors of peptidyl transferase, which is thought to be the basis for selection of the site of ribosome stalling. Both leader-encoded peptides have been shown to alter the secondary structure of Escherichia coli 23S rRNA in vitro. All peptide-induced changes in rRNA conformation are within domains IV and V, which contains the peptidyl transferase center. Here we demonstrate that the leader peptides alter the conformation of domains IV and V of large subunit rRNA from yeast and a representative of the Archaea. The rRNA target for binding the leader peptides is therefore conserved across kingdoms.  相似文献   

15.
C R Harwood  D M Williams  P S Lovett 《Gene》1983,24(2-3):163-169
Gene cat-86 of Bacillus pumilus, specifying chloramphenicol-inducible chloramphenicol acetyltransferase, was previously cloned in Bacillus subtilis on plasmid pUB110. The nucleotide sequence of cat-86 indicates that the gene encodes a protein of 220 amino acids and contains TTG as the translations-initiation codon. The proteins specified by cat-86 and the cat genes present on pC194, pC221 and Tn9 appear to share regions of amino acid sequence similarity. cat-86 is a structural gene on the B. subtilis expression plasmid pPL608. Restriction sites exist within the gene that should permit the product of inserted heterologous coding sequences to be synthesized in B. subtilis as fusion proteins.  相似文献   

16.
17.
18.
The amyR1 region controls the regulated expression of the Bacillus subtilis 168 amylase gene amyE. When cloned into the B. subtilis promoter-cloning plasmid pPL603, amyR1 has been shown to activate expression of the promoter-indicator gene cat-86. In this chimeric plasmid, p5' alpha B10, cat-86 expression was maximal in stationary phase B. subtilis cells and cat-86 expression was repressible by glucose. Both these properties are similar to the regulated expression of the B. subtilis amyE gene. In addition, cat-86 expression in p5' alpha B10 was inducible with chloramphenicol (Cm). The inducibility phenotype of cat-86 has been shown to be independent of the promoter that is used to activate the gene, and inducibility has been suggested to result from the presence of a pair of inverted-repeat sequences that span the ribosome-binding site (RBS) for cat-86. A spontaneous deletion mutant of p5' alpha B10 was isolated, p5' alpha B10 delta 1, in which cat-86 expression was constitutive with respect to Cm, but the basic pattern of amyR1-directed regulation of cat-86 was intact. The rightward deletion endpoint was within the upstream member of the pair of inverted repeats that immediately precede cat-86. This result is therefore consistent with the role proposed for the inverted repeats in Cm inducibility. The leftward endpoint of the deletion is within the amyR1 region and thus allows a more precise determination of the functional domain of amyR1.  相似文献   

19.
Placing a translation stop codon at the ribosomal pause site in the leader of the attenuation-regulated cat-86 gene activates cat expression in the absence of the inducer, chloramphenicol. Genetic experiments have shown that this phenomenon depends on the amino acid sequence of the leader-encoded peptide and could readily be explained if the peptide was an inhibitor of translation termination. Here we demonstrate that the cat-86 leader pentapeptide is an in vitro inhibitor of translation termination in addition to its previously described antipeptidyltransferase activity.  相似文献   

20.
Anthelmycin inhibits protein synthesis on both pro- and eukaryotic ribosomes by preventing the peptide bond-forming reaction. The drug is structurally similar to certain other 4-aminohexosyl cytosine antibiotics including blasticidin S, gougerotin, amicetin and bamicetin although unlike these compounds anthelmycin lacks an aminoacyl moiety. It is proposed that anthelmycin inhibits the ribosomal peptidyl transferase centre by associating with a site that overlaps the (related) ribosomal receptor site(s) for the other four inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号