首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

2.
Photosynthetic Properties of Guard Cell Protoplasts from Vicia faba L.   总被引:3,自引:0,他引:3  
Guard cell protoplasts were isolated enzymatically from theepidermis of Vicia faba L. and their photosynthetic activitieswere investigated. Time courses of light-induced changes inthe chlorophyll a fluorescence intensity of these protoplastsshowed essentially the same induction kinetics as found formesophyll protoplasts of Vicia. The transient change in thefluorescence intensity was affected by DCMU, an inhibitor ofphotosystem II; by phenylmercuric acetate, an inhibitor of ferredoxinand ferredoxin NADP reductase; and by methyl viologen, an acceptorof photosystem I. Low temperature (77 K) emission spectra ofthe protoplasts had peaks at 684 and 735 nm and a shoulder near695 nm. A high O2 uptake (175 µmol mg–1 Chl hr–1)was observed in guard cell protoplasts kept in darkness, whichwas inhibited by 2 mM KCN or NaN3 by about 60%. On illumination,this O2 uptake was partially or completely suppressed, but itssuppression was removed by DCMU, which indicates that oxygenwas evolved (150 µmol mg–1 Chl hr–1) photosynthetically.We concluded that both photosystems I and II function in guardcell chloroplasts and that these protoplasts have high respiratoryactivity. (Received January 30, 1982; Accepted May 15, 1982)  相似文献   

3.
Light-induced changes in membrane potential in Spirogyra   总被引:2,自引:0,他引:2  
Spirogyra cells exhibited changes in membrane potential whenthey were exposed to light. Cells made chloroplast-free didnot show any light-induced potential change (LPC) upon illuminationwith white light and also monochromatic red (680 nm) and farred (720 nm) light. LPC was observed when the cell containedonly a small fragment of chloroplast, whether the cell had anucleus or not. The magnitude of LPC depended on the amountof chloroplast in the cell. DCMU at 10–5 M, CCCP at 10–5 M and DNP at 10–4M at pH 5.5 suppressed LPC, while CCCP at 1–5 ? 10–6M, NH4Cl at 5 ? 10–2 M and DNP at 10–4 M at pH 7.0stimulated LPC. PMS at 10–4 M stimulated LPC and couldinduce LPC which was completely inhibited by DCMU. These factssuggest that LPC is related to noncyclic and cyclic electronflows. The influences of light and dark conditions and various metabolicinhibitors (DCMU, DNP, CCCP, NH4Cl) on ATP level have been investigated.No significant difference in the ATP level was observed betweencells in the light and dark. DNP at 10–4 M (pH 5.5) andCCCP at 5 ? 10–6 M decreased the ATP level significantly,while DCMU and NH4Cl only slightly. Good correlation was notfound between the total ATP level and LPC in Spirogyra. LPC occurred even when the external medium contained only asingle salt such as KCl, NaCl or CaSO4. LPC was also recorded in chloroplasts in situ and in vitro.The mode of LPC of chloroplasts was quite different from thatof the cell. On illumination, the chloroplast potential changedvery rapidly and transiently in the positive direction thenrecovered spontaneously to almost the original potential level. Possible causes of LPC are discussed in relation to the electrogenicion pump. 1 Present address: Department of Botany, Faculty of Science,University of Tokyo, Hongo, Bunkyo, Tokyo 113, Japan. (Received November 9, 1977; )  相似文献   

4.
Guard cell protoplasts (GCP) were isolated from epidermal stripsof Vicia faba L. by enzymatic digestion. The presence of non-osmoticvolume in the protoplast was suggested by the relationship betweenprotoplast volume and the mannitol concentration of the suspendingmedium. Light illumination caused swelling of GCP only whenKCl was present in the suspending medium. Dark treatment causedshrinking of GCP irrespective of the presence of 10 mM KCl.In the presence of 10 µM abscisic acid (ABA), GCP shrank.Light-induced swelling was suppressed at concentrations of ambientCO2 higher than that in normal air. Promotion of swelling wasnot always observed at lower CO2 concentration. These volumechange responses to light, ABA and CO2 suggest that GCP retainsits physiological activity as a guard cell. The osmotic contributionof K+ to volume increase was lower than expected. Ambient CO2seems to have some effect on the contribution of K+ to osmoregulationof GCP. (Received January 30, 1982; Accepted June 25, 1982)  相似文献   

5.
The CO2 compensation point at 25 °C and 250 µEinsteinsm–2 s–1 wasmeasured for 27 bryo-phyte species, andwas found to be in the range of 45–160 µl CO2 I–1air. Under the same conditions Zea mays gave a value of 11 µlI–1 and Horde um vulgare 76 µI–1. The rate of loss of photosyntheticallyfixed 14CO2 in the light and dark in six bryophytes (three mosses,two leafy liverworts, one thalloid liverwort) was determinedin CO2-free air and 100% O2. The rate of 14CO2 evolution inthe light was less than that in the dark in CL2-free air, butin 100% O2 the rate in the light increased, so that in all butthe leafy liverworts it was greater than that in the dark. Raisingthe temperature tended to increase the rate of 14CO2 evolutioninto CO2-free air both in the light and dark, so that the light/dark(L/D) ratio did not greatly vary. The lower rate of loss of14CO2 in the light compared tothe dark could be due to partialinhibition of ‘dark respiration’ reactions in thelight, a low rate of glycolate synthesis and oxidation, or partialreassimilation of the 14CO2 produced, or a combination of someor all of these factors.  相似文献   

6.
The experimentally measured oxygen consumption rate by the cladoceran,Ceriodaphnia dubia, showed a linear increase between 5 and 20°C.Oxygen consumption rates of C. dubia were estimated in situfrom respiratory electron transport system (ETS) activity inLake Rotongaio during summer stratification and winter mixing.Oxygen consumption was 0.002 µl O2 animal–1 h–1in the hypolimnion and 0.076 µl O2 animal–1 h–1in the epilimnion during stratification. Implications of respiredoxygen for metabolic carbon requirements are discussed.  相似文献   

7.
We investigated the effects of 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one(DCEBIO) on the Cl secretory response of the mouse jejunum using the Ussing short-circuit current (Isc) technique. DCEBIO stimulated a concentration-dependent, sustained increase in Isc (EC50 41 ± 1 µM). Pretreating tissues with 0.25 µM forskolin reduced the concentration-dependent increase in Isc by DCEBIO and increased the EC50 (53 ± 5 µM). Bumetanide blocked (82 ± 5%) the DCEBIO-stimulated Isc consistent with Cl secretion. DCEBIO was a more potent stimulator of Cl secretion than its parent molecule, 1-ethyl-2-benzimidazolinone. Glibenclamide or NPPB reduced the DCEBIO-stimulated Isc by >80% indicating the participation of CFTR in the DCEBIO-stimulated Isc response. Clotrimazole reduced DCEBIO-stimulated Isc by 67 ± 15%, suggesting the participation of the intermediate conductance Ca2+-activated K+ channel (IKCa) in the DCEBIO-activated Isc response. In the presence of maximum forskolin (10 µM), the DCEBIO response was reduced and biphasic, reaching a peak response of the change in Isc of 43 ± 5 µA/cm2 and then falling to a steady-state response of 17 ± 10 µA/cm2 compared with DCEBIO control tissues (61 ± 6 µA/cm2). The forskolin-stimulated Isc in the presence of DCEBIO was reduced compared with forskolin control tissues. Similar results were observed with DCEBIO and 8-BrcAMP where adenylate cyclase was bypassed. H89, a PKA inhibitor, reduced the DCEBIO-activated Isc, providing evidence that DCEBIO increased Cl secretion via a cAMP/PKA-dependent manner. These data suggest that DCEBIO stimulates Cl secretion of the mouse jejunum and that DCEBIO targets components of the Cl secretory mechanism. 1-ethyl-2-benzimidazolinone; forskolin; glibenclamide; clotrimazole; H89  相似文献   

8.
Carbonic anhydrase (CA) activity in wild type cells of Chlamydomonasreinhardtii was low when cells were cultured under 2% CO3 inthe light. When the gas phase was changed to air, CA activityincresaed as much as 20 fold over the next 24 hours. In contrast,CA activity did not change markedly in cells of the mutantspet 20-8 (PS II-negative), lip 10-2 (photophosphorylation-negative),and F60 (phosphoribulokinase-negative), when they were subjectedto the same induction regimen. DCMU (10–5 M) and cydoheximide(3 µg/ml) severely inhibited the induction in wild typecells. No induction occured when CO2 concentration was loweredin darkness. 3Present adress: Photoconversion Research Branch, Solar EnergyResearch Institute, Golden, Colorado 80401, USA. (Received June 7, 1982; Accepted December 25, 1982)  相似文献   

9.
Blooms of the toxic red tide phytoplankton Heterosigma akashiwo(Raphidophyceae) are responsible for substantial losses withinthe aquaculture industry. The toxicological mechanisms of H.akashiwoblooms are complex and to date, heavily debated. One putativetype of ichthyotoxin includes the production of reactive oxygenspecies (ROS) that could alter gill structure and function,resulting in asphyxiation. In this study, we investigated thepotential of H.akashiwo to produce extracellular hydrogen peroxide,and have investigated which cellular processes are responsiblefor this production. Within all experiments, H.akashiwo producedsubstantial amounts of hydrogen peroxide (up to 7.6 pmol min–1104 cells–1), resulting in extracellular concentrationsof ~0.5 µmol l–1 H2O2. Measured rates of hydrogenperoxide production were directly proportional to cell density,but at higher cell densities, accuracy of H2O2 detection wasreduced. Whereas light intensity did not alter H2O2 production,rates of production were stimulated when temperature was elevated.Hydrogen peroxide production was not only dependent on growthphase, but also was regulated by the availability of iron inthe medium. Reduction of total iron to 1 nmol l–1 enhancedthe production of H2O2 relative to iron replete conditions (10µmol l–1 iron). From this, we collectively concludethat production of extracellular H2O2 by H.akashiwo occurs througha metabolic pathway that is not directly linked to photosynthesis.  相似文献   

10.
Sporidia of Ustilago maydis and conidia of Ceratocystis ulmipossess an antimycin A and azide-tolerant electron transportpathway which apparently diverts electrons to O2 from some pointon the substrate side of the antimycin A block. The alternatepathway (induced by 0.5 µg/ml antimycin A or 5x10–4M sodium azide) supports a respiratory rate 1.5–2 timesthat of the normal system, but has a terminal oxidase with alower than normal affinity for O2. A similarly high respiratoryrate in U. maydis is supported by the normal pathway when uncoupledby 4 µg/ml of 4,5-dichloro-2-trifluoromethylbenzimidazole,but a high affinity for O2 in this case indicates that the normalterminal oxidase is utilized. Respiration by the normal pathway in both fungi is only slightlyor moderately inhibited by 1.5x10–3 M benzohydroxamicacid (BHAM) and 5x10–4 M 8-hydroxyquinoline. The alternatepathway in U. maydis, however, is inhibited as much as 84 and92% respectively by these two compounds, while alternate respirationin C. ulmi can be inhibited as much as 86 and 76% respectively.BHAM, 8-hydroxyquinoline, 2-pyridinethiol-1-oxide, a,a'-dipyridyl,carboxin, and diphenylamine inhibit alternate respiration ata site on the alternate pathway which is not part of the normalelectron transport system. Antimycin A and azide-insensitiverespiration found in U. maydis and C. ulmi closely resemblesinhibitor insensitivity noted in several fungi and some higherplants. Such an alternate respiratory pathway may be an earlystep in the evolution of oxidative phosphorylation. (Received June 27, 1972; )  相似文献   

11.
A His-tagged PSII core complex was purified from recombinantChlamydomonas reinhardtii D2-H thylakoids by single-step Ni2+-affinitycolumn chromatography and its properties were partially characterizedin terms of their PSII functions and chemical compositions.The PSII core complex that has a His-tag extension at the C-terminusof the D2 protein evolved oxygen at a high rate of 2,400 µmol(mg Chl)–1h–1 at the optimum pH of 6.5 with ferricyanideand 2,6-dichlorobenzoquinone as electron acceptors in the presenceof Ca2+ as an essential cofactor, and approximately 90% of theactivity was blocked by 10 µM DCMU. The core complex exhibitedthe thermoluminescence Q-band but not the B-band regardlessof the presence or absence of DCMU, although both bands wereobserved in the His-tagged thylakoids. The core complex wasfree from PSI and contained one YD, Tyr 160 of the D2 protein,four Mn atoms, two cytochrome b-559, about 46 Chl a molecules,and probably one QA, the primary acceptor quinone of PSII. Itwas inferred from these results that His-tagging at the C-terminusof the D2 protein does not affect the functional and structuralintegrity of the PSII core complex, and that the ‘His-tagstrategy’ is highly useful for biochemical, physicochemical,and structural studies of Chlamydomonas PSII. (Received October 22, 1998; Accepted December 25, 1998)  相似文献   

12.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

13.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

14.
Millhouse, J. and Strother, S. 1987. Further characteristicsof salt-dependent bicarbonate use by the seagrass Zostera muelleri.—J.exp. Bot. 38: 1055–1068. The contribution of HCO3to photosynthetic O2 evolutionin the seagrass Zostera muelleri Irmisch ex Aschers. increasedwith increasing salinity of the bathing seawater when the inorganiccarbon concentration was kept constant. K1/2 (seawater salts)for HCO3 -dependent photosynthesis was 66% of seawatersalinity. Both short- and long-term pretreatment at low salinitiesstimulated photosynthesis in full strength seawater. Twentyfour hours pre-incubation of seagrass plants in 3·0 molm–3 NaHCO3 resulted in increased photosynthesis at allsalinities, apparently due to stimulation of HCO3 use(K1/2 (seawater salts) = 26%). Vmax (HCO3) was not affectedby low salinity pretreatment. The kinetics of HCO3 stimulationby the major seawater cations was investigated. Ca2+ was themost effective cation with the highest Vmax (HCO3) andwith K1/2(Ca2+) = 14 mol m–3. Mg2+ was also very effectiveat less than 50 mol m–3 but higher concentrations wereinhibitory. This inhibition cannot be accounted for solely byprecipitation of MgCO3. Na+ and K+ were both capable of stimulatingHCO3 use. Stimulation was in two distinct parts. Up to500 mol m–3, both citrate and chloride salts gave similarresults (K1/2(Na+) 81 mol m–3, Vmax(HCO3) 0·26µmol O2 mg–1 chl min–1), but use of citratesalts above 500 mol m–2 caused a second stimulation ofHCO3 use (K1/2(Na+) 830 mol m–3, Vmax(HCO3)0·68 µmol O2 mg–1 chl min–1). Vmax(HCO3)for the second-phase Na+ or K+ stimulation was of the same orderas for Ca2+-stimulated HCO3 use. To further characterizesalt-dependent HCO3 use, the sensitivity of photosynthesisto Tris and TES buffers was investigated. The effects of Trisappear to be due to the action of Tris+ causing stimulationof HCO3 -dependent photosynthesis in the absence of salt,but inhibition of HCO3 use in saline media. TES has noeffect on photosynthesis. External carbonic anhydrase, althoughimplicated in salt-dependent HCO3 use in Z. muelleri,could not be detected in whole leaves. Key words: Zostera muelleri, HCO3 use, salinity  相似文献   

15.
The effect of -adrenergic stimulation on cardiac Na+/Ca2+ exchange has been controversial. To clarify the effect, we measured Na+/Ca2+ exchange current (INCX) in voltage-clamped guinea pig, mouse, and rat ventricular cells. When INCX was defined as a 5 mM Ni2+-sensitive current in guinea pig ventricular myocytes, 1 µM isoproterenol apparently augmented INCX by 32%. However, this increase was probably due to contamination of the cAMP-dependent Cl current (CFTR-Cl current, ICFTR-Cl), because Ni2+ inhibited the activation of ICFTR-Cl by 1 µM isoproterenol with a half-maximum concentration of 0.5 mM under conditions where INCX was suppressed. Five or ten millimolar Ni2+ did not inhibit ICFTR-Cl activated by 10 µM forskolin, an activator of adenylate cyclase, suggesting that Ni2+ acted upstream of adenylate cyclase in the -adrenergic signaling pathway. Furthermore, in a low-extracellular Cl bath solution, 1 µM isoproterenol did not significantly alter the amplitude of Ni2+-sensitive INCX at +50 mV, which is close to the reversal potential of ICFTR-Cl. No change in INCX amplitude was induced by 10 µM forskolin. When INCX was activated by extracellular Ca2+, it was not significantly affected by 1 µM isoproterenol in guinea pig, mouse, or rat ventricular cells. We concluded that -adrenergic stimulation does not have significant effects on INCX in guinea pig, mouse, or rat ventricular myocytes. cystic fibrosis transmembrane conductance regulator; nickel ion  相似文献   

16.
Characteristics of the vacuolar-type (V-type) H+-ATPase fromguard cell protoplasts of Commelina communis L. were investigatedusing a linked enzyme assay and nitrate inhibition as a diagnosticindicator of the enzyme activity. ATPase activity was completelyinhibited by about 50 mol m–3 nitrate and activity wasoptimal near pH 8.0. The temperature optimum for activity wasabout 37 C and an Arrhenius plot indicated changes in activationenergy for the ATPase at 15C and possibly at about 30 C. Theenzyme was stimulated by Cl while Ca2+ inhibited activity(l50 = 1.5 mol m–3). The apparent Km (MgATP) was 0.62mol m–3. Incubation of guard cell protoplasts for up to 5 h in 50 µMabscisic acid (ABA) or 25µM fusicoccin (FC) did not affectsubsequent ATPase activity. In vitro assays with FC or ABA alsodid not affect enzyme activity. Activity was not affected bylight or potassium ferricyanide, two factors which are knownto influence stomatal activity. Beticoline was a potent inhibitorof activity (l50 = 50 µM) while DCCD was less effective(l50 = 90µM). On chlorophyll, protein and protoplast bases, V-type ATPaseactivity was greater in guard cell protoplasts than mesophyllcell protoplasts by 66, 13.9 and 1.9, respectively. On atonoplast surface area basis the enzyme activity was 5.6 timeshigher in guard cell protoplasts than in mesophyll cell protoplasts Thus, although the characteristics of the V-type, H +-ATPaseof GCP are very similar to those found in other cell types,rates of activity and probably tonoplast enzyme density aremuch greater in guard cell protoplasts than mesophyll cell protoplastsof C. communis which corresponds with the large and rapid ionfluxes across the tonoplast associated with stomatal movements Key words: Guard cell protoplasts, stomata, V-type H +-ATPase  相似文献   

17.
The luciferin-luciferase method was used to determine ATP extractedfrom darkmaintained and light-exposed samples of the green algaChlorella pyrenoidosa and of the blue-green alga Anacystis nidulans.A few measurements on Synechococcus lividus (a bluegreen thermophile,clone 65?C) are also reported.
  1. The light-minus-dark ATP levels (ATP) from aerobic cells ofChlorella and Anacystis were negative; however, ATP from Synechococcuswas positive. Large positive ATP was obtained in regularly grown(RG: moderate light) Chlorella treated with oligomycin; darklevels were reduced, light levels remained essentially unaffected.In high-light exposed (HLE) Chlorella, oligomycin reduced bothlight and dark ATP levels, but positive ATP was still obtained.However, in Anacystis, which has a different organization ofthylakoid membrane, oligomycin severely reduced both the lightand the dark ATP levels and the ATP remained negative.
  2. Theoligomycin (12 µM) treated Chlorella and the untreatedAnacystis and Synechococcus show the presence of cyclic photophosphorylationunder conditions in which the non-cyclic electron flow fromphotosystem II to photosystem I is blocked by 10 µM 3-(3,4-dichlorophenyl)-l,l-dimethylurea(DCMU), or not allowed to operate by the absence of CO2. Cyclicphotophosphorylation ranged from 10–30% of the maximumATP in RG, to 40–50% in HLE Chlorella. In RG Chlorella,cyclic and non-cyclic (in the absence of DCMU) photophosphorylation(ATP) saturate at about 103 ergs cm–2 sec–1 and104 ergs cm–2 sec–1 and 104 ergs cm–2 sec–1red (>640 nm) light, respectively; a lag was observed inthe light curve.
  3. In Chlorella, the addition of the photosystemI electron acceptormethyl viologen (MV; 1 mM) increased ATPby twofold. Furtheraddition of DCMU (25 µm) reduced thisto the level observedwith DCMU alone. If 1 mM reduced dichlorophenolindophenol orphenazine methosulphate (DCPIPH2 or PMSH2, respectively)wasadded along with DCMU, the ATP level was 30–40% ofthecontrol. Further addition of MV increased the JATP to be70–80%of that of the control. These and other resultsconfirm thepresence of both non-cyclic and cyclic photophosphorylationin vivo, the former predominating in Chlorella, and the latterin Anacystis and Synechococcus.
(Received May 1, 1973; )  相似文献   

18.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

19.
The light-dependent production of hydroxyl radicals (HO{dot})by thylakoids, chloroplasts and leaves of Spinacia oleraceawas investigated using dimethylsulfoxide as HO{dot} trappingagent. Maximum rates of HO{dot} production by thylakoids asindicated by the formation of methane sulfinic acid were observedunder aerobic conditions in the absence of added electron acceptors.They were higher than 2 µmol (mg Chl h)–1. Saturationof HO{dot} production occurred at the low photon flux densityof 100 µmol m–2 s–1. Trapping of HO{dot} bydimethylsulfoxide suppressed, but did not eliminate light-dependentinactivation of PSI and II suggesting that HO{dot} formationcontributed to the photosensitivity of isolated thylakoids.DCMU inhibited HO{dot} formation. Importantly, methylviologendecreased HO{dot} formation in the absence, but stimulated itin the presence of Fe3+. In intact chloroplasts, HO{dot} formation became appreciableonly after KCN had been added to inhibit effective H2O2 scavengingby ascorbate peroxidase. It was stimulated by ferrisulfate,but not by ferricyanide which does not penetrate the chloroplastenvelope. Infiltrated spinach leaves behaved similar in principleto intact chloroplasts in regard to HO{dot} formation but HO{dot}production was very slow if detectable at all by the formationof methylsulfinic acid indicating effective radical detoxification. HO{dot} formation is interpreted to be the result of a Fenton-typereaction which produces HO{dot} in chloroplasts from H2O2 andreduced ferredoxin, when O2 is electron acceptor in the Mehlerreaction and radical detoxification reactions are inhibited. (Received November 13, 1996; Accepted April 23, 1996)  相似文献   

20.
Three marine phytoplankton species (Skeletonema costatum, Olisthodiscusluteus andGonyaulax tamarensis) were grown in batch culturesat 15°C and a 14:10 L:D cycle at irradiance levels rangingfrom 5 to 450 µEinst m–2 s–1. At each irradiance,during exponential growth, concurrent measurements were madeof cell division, carbon-specific growth rate, photosyntheticperformance (both O2 and POC production), dark respiration,and cellular composition in terms of C, N and chlorophyll a.The results indicate that the three species were similar withrespect to chemical composition, C:N (atomic) = 6.9 ±0.4, photo-synthetic quotient, 1.43 ± 0.09, and photosyntheticefficiency, 2.3 ±0.1 x 10–3 µmol O2 (µgChl a)–1 h–1 (µEinst m–2 s–1)–1.Differences in maximum growth rate varied as the –0.24power of cell carbon. Differences in growth efficiency, werebest explained by a power function of Chl a:C at µ = 0.Compensation intensities, ranged from 1.1 µEinst m–2s–1 for S. costatum to 35 forG. tamarensis and were foundto be a linear function of the maintenance respiration rate.The results indicate that interspecific differences in the µ–Irelationship can be adequately explained in terms of just threeparameters: cell carbon at maximum growth rate, the C:Chl aratio (at the limit as growth approaches zero) and the respirationrate at zero growth rate. A light-limited algal growth modelbased on these results gave an excellent fit to the experimentalµ–I curves and explained 97% of the observed interspecificvariability. 1Present address: Lamont-Doherty Geological Observatory Columbiaof University, Palisades, NY 10964, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号