首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein structure determination by NMR can in principle be speeded up both by reducing the measurement time on the NMR spectrometer and by a more efficient analysis of the spectra. Here we study the reliability of protein structure determination based on a single type of spectra, namely nuclear Overhauser effect spectroscopy (NOESY), using a fully automated procedure for the sequence-specific resonance assignment with the recently introduced FLYA algorithm, followed by combined automated NOE distance restraint assignment and structure calculation with CYANA. This NOESY-FLYA method was applied to eight proteins with 63–160 residues for which resonance assignments and solution structures had previously been determined by the Northeast Structural Genomics Consortium (NESG), and unrefined and refined NOESY data sets have been made available for the Critical Assessment of Automated Structure Determination of Proteins by NMR project. Using only peak lists from three-dimensional 13C- or 15N-resolved NOESY spectra as input, the FLYA algorithm yielded for the eight proteins 91–98 % correct backbone and side-chain assignments if manually refined peak lists are used, and 64–96 % correct assignments based on raw peak lists. Subsequent structure calculations with CYANA then produced structures with root-mean-square deviation (RMSD) values to the manually determined reference structures of 0.8–2.0 Å if refined peak lists are used. With raw peak lists, calculations for 4 proteins converged resulting in RMSDs to the reference structure of 0.8–2.8 Å, whereas no convergence was obtained for the four other proteins (two of which did already not converge with the correct manual resonance assignments given as input). These results show that, given high-quality experimental NOESY peak lists, the chemical shift assignments can be uncovered, without any recourse to traditional through-bond type assignment experiments, to an extent that is sufficient for calculating accurate three-dimensional structures.  相似文献   

2.
Reliable automated NOE assignment and structure calculation on the basis of a largely complete, assigned input chemical shift list and a list of unassigned NOESY cross peaks has recently become feasible for routine NMR protein structure calculation and has been shown to yield results that are equivalent to those of the conventional, manual approach. However, these algorithms rely on the availability of a virtually complete list of the chemical shifts. This paper investigates the influence of incomplete chemical shift assignments on the reliability of NMR structures obtained with automated NOESY cross peak assignment. The program CYANA was used for combined automated NOESY assignment with the CANDID algorithm and structure calculations with torsion angle dynamics at various degrees of completeness of the chemical shift assignment which was simulated by random omission of entries in the experimental 1H chemical shift lists that had been used for the earlier, conventional structure determinations of two proteins. Sets of structure calculations were performed choosing the omitted chemical shifts randomly among all assigned hydrogen atoms, or among aromatic hydrogen atoms. For comparison, automated NOESY assignment and structure calculations were performed with the complete experimental chemical shift but under random omission of NOESY cross peaks. When heteronuclear-resolved three-dimensional NOESY spectra are available the current CANDID algorithm yields in the absence of up to about 10% of the experimental 1H chemical shifts reliable NOE assignments and three-dimensional structures that deviate by less than 2 Å from the reference structure obtained using all experimental chemical shift assignments. In contrast, the algorithm can accommodate the omission of up to 50% of the cross peaks in heteronuclear- resolved NOESY spectra without producing structures with a RMSD of more than 2 Å to the reference structure. When only homonuclear NOESY spectra are available, the algorithm is slightly more susceptible to missing data and can tolerate the absence of up to about 7% of the experimental 1H chemical shifts or of up to 30% of the NOESY peaks.Abbreviations: BmPBPA – Bombyx mori pheromone binding protein form A; CYANA – combined assignment and dynamics algorithm for NMR applications; NMR – nuclear magnetic resonance; NOE – nuclear Overhauser effect; NOESY – NOE spectroscopy; RMSD – root-mean-square deviation; WmKT – Williopsis mrakii killer toxin  相似文献   

3.
ASCAN is a new algorithm for automatic sequence-specific NMR assignment of amino acid side-chains in proteins, which uses as input the primary structure of the protein, chemical shift lists of (1)H(N), (15)N, (13)C(alpha), (13)C(beta) and possibly (1)H(alpha) from the previous polypeptide backbone assignment, and one or several 3D (13)C- or (15)N-resolved [(1)H,(1)H]-NOESY spectra. ASCAN has also been laid out for the use of TOCSY-type data sets as supplementary input. The program assigns new resonances based on comparison of the NMR signals expected from the chemical structure with the experimentally observed NOESY peak patterns. The core parts of the algorithm are a procedure for generating expected peak positions, which is based on variable combinations of assigned and unassigned resonances that arise for the different amino acid types during the assignment procedure, and a corresponding set of acceptance criteria for assignments based on the NMR experiments used. Expected patterns of NOESY cross peaks involving unassigned resonances are generated using the list of previously assigned resonances, and tentative chemical shift values for the unassigned signals taken from the BMRB statistics for globular proteins. Use of this approach with the 101-amino acid residue protein FimD(25-125) resulted in 84% of the hydrogen atoms and their covalently bound heavy atoms being assigned with a correctness rate of 90%. Use of these side-chain assignments as input for automated NOE assignment and structure calculation with the ATNOS/CANDID/DYANA program suite yielded structure bundles of comparable quality, in terms of precision and accuracy of the atomic coordinates, as those of a reference structure determined with interactive assignment procedures. A rationale for the high quality of the ASCAN-based structure determination results from an analysis of the distribution of the assigned side chains, which revealed near-complete assignments in the core of the protein, with most of the incompletely assigned residues located at or near the protein surface.  相似文献   

4.
Novel algorithms are presented for automated NOESY peak picking and NOE signal identification in homonuclear 2D and heteronuclear-resolved 3D [1H,1H]-NOESY spectra during de novoprotein structure determination by NMR, which have been implemented in the new software ATNOS (automated NOESY peak picking). The input for ATNOS consists of the amino acid sequence of the protein, chemical shift lists from the sequence-specific resonance assignment, and one or several 2D or 3D NOESY spectra. In the present implementation, ATNOS performs multiple cycles of NOE peak identification in concert with automated NOE assignment with the software CANDID and protein structure calculation with the program DYANA. In the second and subsequent cycles, the intermediate protein structures are used as an additional guide for the interpretation of the NOESY spectra. By incorporating the analysis of the raw NMR data into the process of automated de novoprotein NMR structure determination, ATNOS enables direct feedback between the protein structure, the NOE assignments and the experimental NOESY spectra. The main elements of the algorithms for NOESY spectral analysis are techniques for local baseline correction and evaluation of local noise level amplitudes, automated determination of spectrum-specific threshold parameters, the use of symmetry relations, and the inclusion of the chemical shift information and the intermediate protein structures in the process of distinguishing between NOE peaks and artifacts. The ATNOS procedure has been validated with experimental NMR data sets of three proteins, for which high-quality NMR structures had previously been obtained by interactive interpretation of the NOESY spectra. The ATNOS-based structures coincide closely with those obtained with interactive peak picking. Overall, we present the algorithms used in this paper as a further important step towards objective and efficient de novoprotein structure determination by NMR.  相似文献   

5.
An automated procedure for NOE assignment and three-dimensional structure refinement is presented. The input to the procedure consists of (1) an ensemble of preliminary protein NMR structures, (2) partial sequence-specific assignments for the protein and (3) the positions and volumes of unassigned NOESY cross peaks. Chemical shifts for unassigned side chain protons are predicted from the preliminary structures. The chemical shifts and unassigned NOESY cross peaks are input to an automated procedure for NOE assignment and structure calculation (ARIA) [Nilges et al. (1997) J. Mol. Biol., 269, 408–422]. ARIA is optimized for the task of structure refinement of larger proteins. Errors are filtered to ensure that sequence-specific assignments are reliable. The procedure is applied to the 27.8 kDa single-chain T cell receptor (scTCR). Preliminary NMR structures, nearly complete backbone assignments, partial assignments of side chain protons and more than 1300 unassigned NOESY cross peaks are input. Using the procedure, the resonant frequencies of more than 40 additional side chain protons are assigned. Over 400 new NOE cross peaks are assigned unambiguously. Distances derived from the automatically assigned NOEs improve the precision and quality of calculated scTCR structures. In the refined structures, a hydrophobic cluster of side chains on the scTCR surface that binds major histocompatibility complex (MHC)/antigen is revealed. It is composed of the side chains of residues from three loops and stabilizes the conformation of residues that interact with MHC.  相似文献   

6.
A major time-consuming step of protein NMR structure determination is the generation of reliable NOESY cross peak lists which usually requires a significant amount of manual interaction. Here we present a new algorithm for automated peak picking involving wavelet de-noised NOESY spectra in a process where the identification of peaks is coupled to automated structure determination. The core of this method is the generation of incremental peak lists by applying different wavelet de-noising procedures which yield peak lists of a different noise content. In combination with additional filters which probe the consistency of the peak lists, good convergence of the NOESY-based automated structure determination could be achieved. These algorithms were implemented in the context of the ARIA software for automated NOE assignment and structure determination and were validated for a polysulfide-sulfur transferase protein of known structure. The procedures presented here should be commonly applicable for efficient protein NMR structure determination and automated NMR peak picking. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

7.
The NOAH/DIAMOD suite uses feedback filtering and self-correcting distance geometry to generate 3D structures from unassigned NOESY spectra. In this study we determined the minimum set of experiments needed to generate a high quality structure bundle. Different combinations of 3D 15N-edited, 13C-edited HSQC-NOESY and 2D homonuclear 1H-1H NOESY spectra of the 77 amino acid protein, myeloid progenitor inhibitory factor-1 (MPIF-1) were used as input for NOAH/DIAMOD calculations. The quality of the assignments of NOESY cross peaks and the accuracy of the automatically generated 3D structures were compared to those obtained with a conventional manual procedure. Combining data from two types of experiments synergistically increased the number of peaks assigned unambiguously in both individual spectra. As a general trend for the accuracy of the structures we observed structural variations in the backbone fold of the final structures of about 2 Å for single spectral data, of 1 Å to 1.5 Å for double spectral data, and of 0.6 Å for triple spectral data sets. The quality of the assignments and 3D structures from the optimal data using all three spectra were similar to those obtained from traditional assignment methods with structural variations within the bundle of 0.6 Å and 1.3 Å for backbone and heavy atoms, respectively. Almost all constraints (97%) of the automatic NOESY cross peak assignments were cross compatible with the structures from the conventional manual assignment procedure, and an even larger proportion (99%) of the manually derived constraints were compatible with the automatically determined 3D structures. The two mean structures determined by both methods differed only by 1.3 Å rmsd for the backbone atoms in the well-defined regions of the protein. Thus NOAD/DIAMOD analysis of spectra from labeled proteins provides a reliable method for high throughput analysis of genomic targets.  相似文献   

8.
9.
Combined automated NOE assignment and structure determination module (CANDID) is a new software for efficient NMR structure determination of proteins by automated assignment of the NOESY spectra. CANDID uses an iterative approach with multiple cycles of NOE cross-peak assignment and protein structure calculation using the fast DYANA torsion angle dynamics algorithm, so that the result from each CANDID cycle consists of exhaustive, possibly ambiguous NOE cross-peak assignments in all available spectra and a three-dimensional protein structure represented by a bundle of conformers. The input for the first CANDID cycle consists of the amino acid sequence, the chemical shift list from the sequence-specific resonance assignment, and listings of the cross-peak positions and volumes in one or several two, three or four-dimensional NOESY spectra. The input for the second and subsequent CANDID cycles contains the three-dimensional protein structure from the previous cycle, in addition to the complete input used for the first cycle. CANDID includes two new elements that make it robust with respect to the presence of artifacts in the input data, i.e. network-anchoring and constraint-combination, which have a key role in de novo protein structure determinations for the successful generation of the correct polypeptide fold by the first CANDID cycle. Network-anchoring makes use of the fact that any network of correct NOE cross-peak assignments forms a self-consistent set; the initial, chemical shift-based assignments for each individual NOE cross-peak are therefore weighted by the extent to which they can be embedded into the network formed by all other NOE cross-peak assignments. Constraint-combination reduces the deleterious impact of artifact NOE upper distance constraints in the input for a protein structure calculation by combining the assignments for two or several peaks into a single upper limit distance constraint, which lowers the probability that the presence of an artifact peak will influence the outcome of the structure calculation. CANDID test calculations were performed with NMR data sets of four proteins for which high-quality structures had previously been solved by interactive protocols, and they yielded comparable results to these reference structure determinations with regard to both the residual constraint violations, and the precision and accuracy of the atomic coordinates. The CANDID approach has further been validated by de novo NMR structure determinations of four additional proteins. The experience gained in these calculations shows that once nearly complete sequence-specific resonance assignments are available, the automated CANDID approach results in greatly enhanced efficiency of the NOESY spectral analysis. The fact that the correct fold is obtained in cycle 1 of a de novo structure calculation is the single most important advance achieved with CANDID, when compared with previously proposed automated NOESY assignment methods that do not use network-anchoring and constraint-combination.  相似文献   

10.
Peak lists derived from nuclear magnetic resonance (NMR) spectra are commonly used as input data for a variety of computer assisted and automated analyses. These include automated protein resonance assignment and protein structure calculation software tools. Prior to these analyses, peak lists must be aligned to each other and sets of related peaks must be grouped based on common chemical shift dimensions. Even when programs can perform peak grouping, they require the user to provide uniform match tolerances or use default values. However, peak grouping is further complicated by multiple sources of variance in peak position limiting the effectiveness of grouping methods that utilize uniform match tolerances. In addition, no method currently exists for deriving peak positional variances from single peak lists for grouping peaks into spin systems, i.e. spin system grouping within a single peak list. Therefore, we developed a complementary pair of peak list registration analysis and spin system grouping algorithms designed to overcome these limitations. We have implemented these algorithms into an approach that can identify multiple dimension-specific positional variances that exist in a single peak list and group peaks from a single peak list into spin systems. The resulting software tools generate a variety of useful statistics on both a single peak list and pairwise peak list alignment, especially for quality assessment of peak list datasets. We used a range of low and high quality experimental solution NMR and solid-state NMR peak lists to assess performance of our registration analysis and grouping algorithms. Analyses show that an algorithm using a single iteration and uniform match tolerances approach is only able to recover from 50 to 80% of the spin systems due to the presence of multiple sources of variance. Our algorithm recovers additional spin systems by reevaluating match tolerances in multiple iterations. To facilitate evaluation of the algorithms, we developed a peak list simulator within our nmrstarlib package that generates user-defined assigned peak lists from a given BMRB entry or database of entries. In addition, over 100,000 simulated peak lists with one or two sources of variance were generated to evaluate the performance and robustness of these new registration analysis and peak grouping algorithms.  相似文献   

11.
The protocols currently used for protein structure determination by nuclear magnetic resonance (NMR) depend on the determination of a large number of upper distance limits for proton-proton pairs. Typically, this task is performed manually by an experienced researcher rather than automatically by using a specific computer program. To assess whether it is indeed possible to generate in a fully automated manner NMR structures adequate for deposition in the Protein Data Bank, we gathered 10 experimental data sets with unassigned nuclear Overhauser effect spectroscopy (NOESY) peak lists for various proteins of unknown structure, computed structures for each of them using different, fully automatic programs, and compared the results to each other and to the manually solved reference structures that were not available at the time the data were provided. This constitutes a stringent "blind" assessment similar to the CASP and CAPRI initiatives. This study demonstrates the feasibility of routine, fully automated protein structure determination by NMR.  相似文献   

12.
The solution structure of a novel 69 residue proteinase inhibitor, Linum usitatissimum trypsin inhibitor (LUTI), was determined using a method based on computer aided assignment of nuclear Overhauser enhancement spectroscopy (NOESY) data. The approach applied uses the program NOAH/DYANA for automatic assignment of NOESY cross-peaks. Calculations were carried out using two unassigned NOESY peak lists and a set of determined dihedral angle restraints. In addition, hydrogen bonds involving amide protons were identified during calculations using geometrical criteria and values of HN temperature coefficients. Stereospecific assignment of beta-methylene protons was carried out using a standard procedure based on nuclear Overhauser enhancement intensities and 3J(alpha)(beta) coupling constants. Further stereospecific assignment of methylene protons and diastereotopic methyl groups were established upon structure-based method available in the program GLOMSA and chemical shift calculations. The applied algorithm allowed us to assign 1968 out of 2164 peaks (91%) derived from NOESY spectra recorded in H2O and 2H2O. The final experimental data input consisted of 1609 interproton distance restraints, 88 restraints for 44 hydrogen bonds, 63 torsion angle restraints and 32 stereospecifically assigned methylene proton pairs and methyl groups. The algorithm allowed the calculation of a high precision protein structure without the laborious manual assignment of NOESY cross-peaks. For the 20 best conformers selected out of 40 refined ones in the program CNS, the calculated average pairwise rmsd values for residues 3 to 69 were 0.38 A (backbone atoms) and 1.02 A (all heavy atoms). The three-dimensional LUTI structure consists of a mixed parallel and antiparallel beta-sheet, a single alpha-helix and shows the fold of the potato 1 family of proteinase inhibitors. Compared to known structures of the family, LUTI contains Arg and Trp residues at positions P6' and P8', respectively, instead of two Arg residues, involved in the proteinase binding loop stabilization. A consequence of the ArgTrp substitution at P8' is a slightly more compact conformation of the loop relative to the protein core.  相似文献   

13.
The sequential assignment of backbone resonances is the first step in the structure determination of proteins by heteronuclear NMR. For larger proteins, an assignment strategy based on proton side-chain information is no longer suitable for the use in an automated procedure. Our program PASTA (Protein ASsignment by Threshold Accepting) is therefore designed to partially or fully automate the sequential assignment of proteins, based on the analysis of NMR backbone resonances plus C information. In order to overcome the problems caused by peak overlap and missing signals in an automated assignment process, PASTA uses threshold accepting, a combinatorial optimization strategy, which is superior to simulated annealing due to generally faster convergence and better solutions. The reliability of this algorithm is shown by reproducing the complete sequential backbone assignment of several proteins from published NMR data. The robustness of the algorithm against misassigned signals, noise, spectral overlap and missing peaks is shown by repeating the assignment with reduced sequential information and increased chemical shift tolerances. The performance of the program on real data is finally demonstrated with automatically picked peak lists of human nonpancreatic synovial phospholipase A2, a protein with 124 residues.  相似文献   

14.
A reliable automated approach for assignment of NOESY spectra would allow more rapid determination of protein structures by NMR. In this paper we describe a semi-automated procedure for complete NOESY assignment (SANE, Structure Assisted NOE Evaluation), coupled to an iterative procedure for NMR structure determination where the user is directly involved. Our method is similar to ARIA [Nilges et al. (1997) J. Mol. Biol., 269, 408–422], but is compatible with the molecular dynamics suites AMBER and DYANA. The method is ideal for systems where an initial model or crystal structure is available, but has also been used successfully for ab initio structure determination. Use of this semi-automated iterative approach assists in the identification of errors in the NOE assignments to short-cut the path to an NMR solution structure.  相似文献   

15.
MOTIVATION: High-throughput NMR structure determination is a goal that will require progress on many fronts, one of which is rapid resonance assignment. An important rate-limiting step in the resonance assignment process is accurate identification of resonance peaks in the NMR spectra. Peak-picking schemes range from incomplete (which lose essential assignment connectivities) to noisy (which obscure true connectivities with many false ones). We introduce an automated preassignment process that removes false peaks from noisy peak lists by requiring consensus between multiple NMR experiments and exploiting a priori information about NMR spectra. This process is designed to accept multiple input formats and generate multiple output formats, in an effort to be compatible with a variety of user preferences. RESULTS: Automated preprocessing with APART rapidly identifies and removes false peaks from initial peak lists, reduces the burden of manual data entry, and documents and standardizes the peak filtering process. Successful preprocessing is demonstrated by the increased number of correct assignments obtained when data are submitted to an automated assignment program. AVAILABILITY: APART is available from http://sir.lanl.gov/NMR/APART.htm CONTACT: npawley@lanl.gov; rmichalczyk@lanl.gov SUPPLEMENTARY INFORMATION: Manual pages with installation instructions, procedures and screen shots can also be found at http://sir.lanl.gov/NMR/APART_Manual1.pdf.  相似文献   

16.
Automated assignment of NOESY spectra is a prerequisite for automated structure determination of biological macromolecules. With the program KNOWNOE we present a novel, knowledge based approach to this problem. KNOWNOE is devised to work directly with the experimental spectra without interference of an expert. Besides making use of routines already implemented in AUREMOL, it contains as a central part a knowledge driven Bayesian algorithm for solving ambiguities in the NOE assignments. These ambiguities mainly arise from chemical shift degeneration which allows multiple assignments of cross peaks. Using a set of 326 protein NMR structures, statistical tables in the form of atom-pairwise volume probability distributions (VPDs) were derived. VPDs for all assignment possibilities relevant to the assignments of interproton NOEs were calculated. With these data for a given cross peak with N possible assignments A i(i = 1,...,N) the conditional probabilities P(A i, a|V 0) can be calculated that the assignment A idetermines essentially all (a-times) of the cross peak volume V 0. An assignment A kwith a probability P(A k, a|V 0) higher than 0.8 is transiently considered as unambiguously assigned. With a list of unambiguously assigned peaks a set of structures is calculated. These structures are used as input for a next cycle of iteration where a distance threshold D maxis dynamically reduced. The program KNOWNOE was tested on NOESY spectra of a medium size protein, the cold shock protein (TmCsp) from Thermotoga maritima. The results show that a high quality structure of this protein can be obtained by automated assignment of NOESY spectra which is at least as good as the structure obtained from manual data evaluation.  相似文献   

17.
Peak lists are commonly used in NMR as input data for various software tools such as automatic assignment and structure calculation programs. Inconsistencies of chemical shift referencing among different peak lists or between peak and chemical shift lists can cause severe problems during peak assignment. Here we present a simple and robust tool to achieve self-consistency of the chemical shift referencing among a set of peak lists. The Peakmatch algorithm matches a set of peak lists to a specified reference peak list, neither of which have to be assigned. The chemical shift referencing offset between two peak lists is determined by optimizing an assignment-free match score function using either a complete grid search or downhill simplex optimization. It is shown that peak lists from many different types of spectra can be matched reliably as long as they contain at least two corresponding dimensions. Using a simulated peak list, the Peakmatch algorithm can also be used to obtain the optimal agreement between a chemical shift list and experimental peak lists. Combining these features makes Peakmatch a useful tool that can be applied routinely before automatic assignment or structure calculation in order to obtain an optimized input data set.  相似文献   

18.
Selective methyl labeling is an extremely powerful approach to study the structure, dynamics and function of biomolecules by NMR. Despite spectacular progress in the field, such studies remain rather limited in number. One of the main obstacles remains the assignment of the methyl resonances, which is labor intensive and error prone. Typically, NOESY crosspeak patterns are manually correlated to the available crystal structure or an in silico template model of the protein. Here, we propose methyl assignment by graphing inference construct, an exhaustive search algorithm with no peak network definition requirement. In order to overcome the combinatorial problem, the exhaustive search is performed locally, i.e. for a small number of methyls connected through-space according to experimental 3D methyl NOESY data. The local network approach drastically reduces the search space. Only the best local assignments are combined to provide the final output. Assignments that match the data with comparable scores are made available to the user for cross-validation by additional experiments such as methyl-amide NOEs. Several NMR datasets for proteins in the 25–50 kDa range were used during development and for performance evaluation against the manually assigned data. We show that the algorithm is robust, reliable and greatly speeds up the methyl assignment task.  相似文献   

19.
20.
The automated identification of signals in multidimensional NMR spectra is a challenging task, complicated by signal overlap, noise, and spectral artifacts, for which no universally accepted method is available. Here, we present a new peak picking algorithm, CYPICK, that follows, as far as possible, the manual approach taken by a spectroscopist who analyzes peak patterns in contour plots of the spectrum, but is fully automated. Human visual inspection is replaced by the evaluation of geometric criteria applied to contour lines, such as local extremality, approximate circularity (after appropriate scaling of the spectrum axes), and convexity. The performance of CYPICK was evaluated for a variety of spectra from different proteins by systematic comparison with peak lists obtained by other, manual or automated, peak picking methods, as well as by analyzing the results of automated chemical shift assignment and structure calculation based on input peak lists from CYPICK. The results show that CYPICK yielded peak lists that compare in most cases favorably to those obtained by other automated peak pickers with respect to the criteria of finding a maximal number of real signals, a minimal number of artifact peaks, and maximal correctness of the chemical shift assignments and the three-dimensional structure obtained by fully automated assignment and structure calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号