首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Caenorhabditis elegans requires sterol, usually supplied as cholesterol, but this is enzymatically modified, and different sterols can substitute. Sterol deprivation decreased brood size and adult growth in the first generation, and completely, reversibly, arrested growth as larvae in the second. After one generation of sterol deprivation, 10 ng/ml cholesterol allowed delayed laying of a few eggs, but full growth required 300 ng/ml. C. elegans synthesizes two unusual 4alpha-methyl sterols (4MSs), but each 4MS supported only limited growth as the sole sterol. However, addition of only 10 ng of cholesterol to 1,000 ng of 4MS restored full growth and egg-laying, suggesting that both a 4MS and an unmethylated sterol are required for development. Filipin stained sterols in only a few specific cells: the excretory gland cell, two amphid socket cells, two phasmid socket cells and, in males, spicule socket cells. Sterols were also present in the pharynx and in the intestine of feeding animals in a proximal-to-distal gradient. This non-random sterol distribution, the low concentration requirements, and the effects of 4MSs argues that sterols are unlikely to be used for bulk structural modification of cell membranes, but may be required as hormone precursors and/or developmental effectors.  相似文献   

2.
3.
The sterol fraction of Glycine max (soybean) was found to contain a mixture of 13 major sterols which differed dramatically in composition between seeds and shoots. Typical C4-desmethyl Delta(5)-sterols, including sitosterol, predominate the sterol mixture of shoots, whereas C4-methyl sterol intermediates, cycloartenol and 24(28)-methylene cycloartanol, accumulate in seeds. The significance of modified sterol profile of shoot compared to seed was relevant to the physiology of Phytophthora sojae, a phytopathogen of soybean shown to be auxotrophic for sterol. Sterols native to the host plant containing a C4-methyl group, such as cycloartenol, were not utilized by the fungus. Alternatively, all Delta(5)-sterols added to the culture media of P. sojae supported normal growth and promoted viable oospore production. The results demonstrate the importance of sterols in plant-fungal interactions and offer the possibility of bioengineering the phytosterol pathway for resistance to phytopathogens which scavenge specific sterols of the host plant to complete the life cycle.  相似文献   

4.
Mendenhall AR  LaRue B  Padilla PA 《Genetics》2006,174(3):1173-1187
Oxygen deprivation has a role in the pathology of many human diseases. Thus it is of interest in understanding the genetic and cellular responses to hypoxia or anoxia in oxygen-deprivation-tolerant organisms such as Caenorhabditis elegans. In C. elegans the DAF-2/DAF-16 pathway, an IGF-1/insulin-like signaling pathway, is involved with dauer formation, longevity, and stress resistance. In this report we compared the response of wild-type and daf-2(e1370) animals to anoxia. Unlike wild-type animals, the daf-2(e1370) animals have an enhanced anoxia-survival phenotype in that they survive long-term anoxia and high-temperature anoxia, do not accumulate significant tissue damage in either of these conditions, and are motile after 24 hr of anoxia. RNA interference was used to screen DAF-16-regulated genes that suppress the daf-2(e1370)-enhanced anoxia-survival phenotype. We identified gpd-2 and gpd-3, two nearly identical genes in an operon that encode the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase. We found that not only is the daf-2(e1370)-enhanced anoxia phenotype dependent upon gpd-2 and gpd-3, but also the motility of animals exposed to brief periods of anoxia is prematurely arrested in gpd-2/3(RNAi) and daf-2(e1370);gpd-2/3(RNAi) animals. These data suggest that gpd-2 and gpd-3 may serve a protective role in tissue exposed to oxygen deprivation.  相似文献   

5.
The dinoflagellate genus Pyrocystis includes a small number of marine species, which spend the majority of their life cycles as nonmotile cells within a carbohydrate sheath, and which are found ubiquitously throughout the world's oceans. The biochemistry of this model dinoflagellate genus has been widely studied due to its ability to bioluminesce. However, Pyrocystis has been comparatively understudied with respect to its lipid biochemistry, in particular that of sterols. To date, examination of the sterols of Pyrocystis has focused primarily upon Pyrocystis lunula, which produces cholesterol and 4,24-dimethyl-5α-cholestan-3β-ol as its predominant sterols, while it lacks the common dinoflagellate sterol, dinosterol. We have examined the sterol composition of the two other commercially available species of Pyrocystis, Pyrocystis fusiformis and Pyrocystis noctiluca. Pyrocystis noctiluca possesses dinosterol as its most abundant sterol, while P. fusiformis possesses dinosterol and 4,24-dimethyl-5α-cholestan-3β-ol as the predominant sterols, placing it at an intermediate position between P. lunula and P. noctiluca, as based on sterol composition. The potential limitations of the dinoflagellate sterol biomarker dinosterol are also explored in this study due to its notable absence in P. lunula.  相似文献   

6.
Dietary components impact metabolism early in life. Some of the diet-induced effects are long lasting and can lead to various adult-based diseases. In the current studies, we examined the short-term effects of dietary cholesterol on neonatal hepatic sterol metabolism and the long-term effects that those early-life diets had on sterol metabolism in adulthood. Neonatal hamsters began consuming solid food as a supplement to milk by 5 days of age; diets contained 0 or 2% added cholesterol (wt/wt). By 10 days of age, plasma and liver cholesterol concentrations were 3.2- and 2.5-fold greater, respectively, in the neonates fed cholesterol. Hepatic sterol synthesis rates were suppressed 65% in cholesterol-fed neonates compared with control neonates. By 20 days of age, plasma and liver cholesterol concentrations were still greater and sterol synthesis rates were now suppressed maximally in neonates fed cholesterol compared with control neonates. The expression level of an apolipoprotein B-containing lipoprotein receptor (low-density lipoprotein receptor-related protein) was greater and the mature form of the sterol regulatory element-binding protein-2 was similar in livers of 20-day-old control neonates compared with control neonates at 10 days of age. To test whether the change in sterol balance in the neonatal period had a lasting effect on hepatic sterol metabolism, all animals were weaned on a low-cholesterol diet. At 70 days of age, hepatic sterol synthesis rates, plasma lipoprotein and liver cholesterol concentrations, and bile acid pool sizes and compositions were measured. Sterol balance in the adults was similar between animals fed either diet early in life, as demonstrated by a lack of difference in any parameter measured. Thus, even though dietary cholesterol suppressed hepatic sterol synthesis rates dramatically in the neonatal hamster, the change has little impact on sterol balance later in life.  相似文献   

7.
Using yeast strains with null mutations in structural genes which encode delta-aminolevulinic acid synthetase (HEM1), isozymes of 3-hydroxy-3-methylglutaryl coenzyme A (HMG1 and HMG2), squalene epoxidase (ERG1), and fatty acid delta 9-desaturase (OLE1), we were able to determine the effect of hemes, sterols, and unsaturated fatty acids on both sterol production and the specific activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) in Saccharomyces cerevisiae. We found that the HMGR isozymes direct essentially equal amounts of carbon to the biosynthesis of sterols under heme-competent conditions, despite a huge disparity (57-fold) in the specific activities of the reductases. Our results demonstrate that palmitoleic acid (16:1) acts as a rate-limiting positive regulator and that ergosterol acts as a potent inhibitor of sterol production in strains which possess only the HMGR1 isozyme (HMG1 hmg2). In strains which contain only the HMGR2 isozyme (hmg1 HMG2), sterol production was inhibited by oleic acid (18:1) and to a lesser degree by ergosterol. The specific activities of the two reductases (HMGR1 and HMGR2) were found to be differentially regulated by hemes but not by ergosterol, palmitoleic acid, or oleic acid. The disparate effects of unsaturated fatty acids and sterols on these strains lead us to consider the possibility of separate, compartmentalized isoprenoid pathways in S. cerevisiae.  相似文献   

8.
We measured the incorporation of radiolabeled methionine and acetate into the sterol component of G204, a Saccharomyces cerevisiae mutant strain which is partially heme competent. By comparing the amount of label incorporated into the sterol pool of a control culture, to which no exogenous sterol was added, with a culture which had various sterols added to the growth medium, we were able to determine the specific structural features of ergosterol which facilitate its ability to restrict the sterol biosynthetic pathway. These experiments demonstrate that sterols which contain both a C22 unsaturation and a C24 methyl group are capable of reducing sterol biosynthesis by approx. 50%, regardless of B-ring structure. We examined the regulatory properties of various oxysterols; 24,25-epoxylanosterol reduced endogenous biosynthesis by 49%, whereas all cholesterol derivatives tested, including 25-hydroxycholesterol, had little effect. A new procedure for the synthesis of ergosterol peroxides is also described.  相似文献   

9.
10.
11.
Selective sterol accumulation in ABCG5/ABCG8-deficient mice   总被引:8,自引:0,他引:8  
The ATP binding cassette (ABC) transporters ABCG5 and ABCG8 limit intestinal absorption and promote biliary secretion of neutral sterols. Mutations in either gene cause sitosterolemia, a rare recessive disease in which plasma and tissue levels of several neutral sterols are increased to varying degrees. To determine why patients with sitosterolemia preferentially accumulate noncholesterol sterols, levels of cholesterol and the major plant sterols were compared in plasma, liver, bile, and brain of wild-type and ABCG5/ABCG8-deficient (G5G8(-/-)) mice. The total sterol content of liver and plasma was similar in G5G8(-/-) mice and wild-type animals despite an approximately 30-fold increase in noncholesterol sterol levels in the knockout animals. The relative enrichment of each sterol in the plasma and liver of G5G8(-/-) mice (stigmasterol > sitosterol = cholestanol > bassicasterol > campesterol > cholesterol) reflected its relative enrichment in the bile of wild-type mice. These results indicate that 24-alkylated, Delta22, and 5alpha-reduced sterols are preferentially secreted into bile and that preferential biliary secretion of noncholesterol sterols by ABCG5 and ABCG8 prevents the accumulation of these sterols in normal animals. The mRNA levels for 13 enzymes in the cholesterol biosynthetic pathway were reduced in the livers of the G5G8(-/-) mice, despite a 50% reduction in hepatic cholesterol level. Thus, the accumulation of sterols other than cholesterol is sensed by the cholesterol regulatory machinery.  相似文献   

12.
13.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   

14.
Whole body sterol metabolism in insects has seldom been studied. We were able to design an appropriate study at a butterfly farm in Belize. We collected six larvas of butterfly (Morpho peleides), their food (leaves of Pterocarpus bayessii), and their excretions. In addition, six adult butterflies were collected. The sterols of the diet, the larva, and adult butterfly were analyzed by gas-liquid chromatography. The structures of these sterols were identified by digitonin precipitation, GC-MS, and NMR. Four sterols (cholesterol, campesterol, stigmasterol, and sitosterol) and a sterol mixture were found in the food, the body, and the excreta of the larva. The tissue sterol content of the larva was 326 microg. They consumed 276 microg of sterols per day. Their excretion was 185 microg per day as sterols. The total tissue sterol contents of the larva and butterfly were similar, but they had different sterol compositions, which indicated interconversion of sterols during development. There was a progressive increase in the cholesterol content from larva to butterfly and a decrease in the content of sitosterol and other plant sterols, which were likely converted to cholesterol. Our data indicated an active sterol metabolism in butterfly larva. Diet played an important role in determining its sterol composition. During metamorphosis, there was an interconversion of sterols. This is the first paper documenting the fecal sterol excretion in insects as related to dietary intakes.  相似文献   

15.
Reported herein are the results of investigations of the effects of a number of 14 alpha-alkyl-substituted 15-oxygenated sterols, prepared by chemical synthesis, on sterol biosynthesis and the levels of 3-hydroxy-3-methylglutaryl CoA reductase activity in L cells and in primary cultures of fetal mouse liver cells grown in serum-free media. Several of the compounds, most notably 14 alpha-ethyl-5 alpha-cholest-7-en-3 beta, 15 alpha-diol and 14 alpha-ethyl-5 alpha-cholest-7-en-15 alpha-ol-3-one, were found to be extraordinarily potent inhibitors of sterol synthesis in these cells. For example, the latter compound caused a 50% inhibition of the incorporation of labeled acetate into digitonin-precipitable sterols in L cells in culture at a concentration of 6 X 10(-9) M.  相似文献   

16.
When Chlorella sorokiniana was grown in the presence of 4 ppm AY-9944 total sterol production was unaltered in comparison to control cultures. However, inhibition of sterol biosynthesis was shown by the accumulation of a number of sterols which were considered to be intermediates in sterol biosynthesis. The sterols which were found in treated cultures were identified as cyclolaudenol, 4α,14α-dimethyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 4α,14α-dimethyl -5α-ergosta-8,25-dien-3β-ol, 14α-methyl-9β,19-cyclo-5α-ergost-25-en-3β-ol, 24-methylpollinastanol, 14α-methyl-5α-ergost-8-en-3β-ol, 5α-ergost -8(14)-enol, 5α-ergost-8-enol, 5α-ergosta-8(14),22-dienol, 5α-ergosta-8,22-dienol, 5α-ergosta-8,14-dienol, and 5α-ergosta-7,22-dienol, in addition to the normally occurring sterols which are ergosterol, 5α-ergost-7-enol, and ergosta-5,7-dienol.The occurrence of these sterols in the treated culture indicates that AY-9944 is an effective inhibitor of the Δ8 → Δ7 isomerase and Δ14-reductase, and also inhibits introduction of the Δ22-double bond. The occurrence of 14α-dimethyl-5α-ergosta-8,25-dien-3β-ol and 14α-methyl-9β,19-cyclo-5α-ergost -25-en-3β-ol is reported for the first time in living organisms. The presence of 25-methylene sterols suggests that they, and not 24-methylene derivatives, are intermediates in the biosynthesis of sterols in C. sorokiniana.  相似文献   

17.
A gene encoding a sterol ester-synthesizing enzyme was identified in Arabidopsis. The cDNA of the Arabidopsis gene At1g04010 (AtPSAT) was overexpressed in Arabidopsis behind the cauliflower mosaic virus 35S promoter. Microsomal membranes from the leaves of overexpresser lines catalyzed the transacylation of acyl groups from phosphatidylethanolamine to sterols. This activity correlated with the expression level of the AtPSAT gene, thus demonstrating that this gene encodes a phospholipid:sterol acyltransferase (PSAT). Properties of the AtPSAT were examined in microsomal fractions from the tissues of an overexpresser. The enzyme did not utilize neutral lipids, had the highest activity with phosphatidylethanolamine, had a 5-fold preference for the sn-2 position, and utilized both saturated and unsaturated fatty acids. Various sterols and sterol intermediates, including triterpenic precursors, were acylated by the PSAT, whereas other triterpenes were not. Sterol selectivity studies showed that the enzyme is activated by end product sterols and that sterol intermediates are preferentially acylated by the activated enzyme. This indicates that PSAT both regulates the pool of free sterols as well as limits the amount of free sterol intermediates in the membranes. Two T-DNA insertion mutants in the AtPSAT gene, with strongly reduced (but still measurable) levels of sterol esters in their tissues, had no detectable PSAT activity in the microsomal fractions, suggesting that Arabidopsis possess other enzyme(s) capable of acylating sterols. The AtPSAT is the only intracellular enzyme found so far that catalyzes an acyl-CoA-independent sterol ester formation. Thus, PSAT has a similar physiological function in plant cells as the unrelated acyl-CoA:sterol acyltransferase has in animal cells.  相似文献   

18.
19.
The high sterol concentration in eukaryotic cell membranes is thought to influence membrane properties such as permeability, fluidity and microdomain formation. Drosophila cannot synthesize sterols, but do require them for development. Does this simply reflect a requirement for sterols in steroid hormone biosynthesis, or is bulk membrane sterol also essential in Drosophila? If the latter is true, how do they survive fluctuations in sterol availability and maintain membrane homeostasis? Here, we show that Drosophila require both bulk membrane sterol and steroid hormones in order to complete adult development. When sterol availability is restricted, Drosophila larvae modulate their growth to maintain membrane sterol levels within tight limits. When dietary sterol drops below a minimal threshold, larvae arrest growth and development in a reversible manner. Strikingly, membrane sterol levels in arrested larvae are dramatically reduced (dropping sixfold on average) in most tissues except the nervous system. Thus, sterols are dispensable for maintaining the basic membrane biophysical properties required for cell viability; these functions can be performed by non-sterol lipids when sterols are unavailable. However, bulk membrane sterol is likely to have essential functions in specific tissues during development. In tissues in which sterol levels drop, the overall level of sphingolipids increases and the proportion of different sphingolipid variants is altered. These changes allow survival, but not growth, when membrane sterol levels are low. This relationship between sterols and sphingolipids could be an ancient and conserved principle of membrane homeostasis.  相似文献   

20.
The activity of phytosterols on human organism includes the ability of these compounds to incorporate into membranes. In the consequence the plant sterols are able to increase total sterol concentration in membrane or/and to replace cholesterol molecules. The aim of this work was to compare the influence of both these effects on the properties of model erythrocyte membranes. Moreover, the interactions between the plant sterols (β-sitosterol and stigmasterol) and saturated–monounsaturated phosphatidylcholine were investigated and the condensing and ordering potency of these phytocompounds on membrane phospholipids were thoroughly analyzed. It was found that the addition of the plant sterols into model membrane modifies the condensation, ordering and interactions in the system. Moreover, the replacement of mammalian sterol by phytosterol more strongly influences the model system than even a 10% increase of total sterol concentration induced by the incorporation of the plant sterol, at constant content of cholesterol. The investigated plant sterols at their lower concentration in the mixed system are of similar effect on its properties. At higher content stigmasterol was found to modify the properties of model membrane more strongly than β-sitosterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号