首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For the purpose of improving accuracy of noninvasive flow measurements in small (1–2 mm diameter) blood vessels, an existing 20 MHz pulsed ultrasound Doppler velocimeter (PUDVM) has been augmented to allow fast Fourier transformation (FFT) of its Doppler shift signal. The modified instrument was used to collect velocity spectra for a benchtop test section delivering precise Poiseuille flows at velocities in the range of physiological interest. The velocity spectra demonstrated a substantial degree of broadening, much of which was attributable to the geometry of the finite sample volume size. Several spectral indices were studied as a function of flow field variables. Results showed that the intensity-weighted mean Doppler shift frequency, when converted to its corresponding velocity vM, agreed very closely with the theoretically predicted local fluid velocity. Measurement linearity and repeatability were evaluated for a number of system variables, indicating that FFT performance was essentially unaffected by several parameters capable of causing major degradation of (phasic) Doppler shift signals produced by conventional zero-crossing-counter circuitry. As presently configured, the augmented PUDVM instrument is fully capable of detailed flow field mapping in small subcutaneous vessels such as human digital arteries.  相似文献   

2.
Real-time B-mode ultrasonography was combined with a pulsed Doppler ultrasound technique for transcutaneous measurement of human fetal blood flow in the aorta and intra-abdominal part of the umbilical vein. The target vessel was located and its diameter measured in the two-dimensional real-time image. The pulsed Doppler transducer was attached to the real-time transducer at a fixed angle. By processing the Doppler shift signals the instrument estimated the mean and maximum blood velocities and the integral under the velocity curves. This permitted calculation of the blood flow. The method was applied to 26 fetuses in normal late pregnancies. Mean blood flow in the descending part of the fetal aorta based on maximum velocity was 191 ml/kg/min. Mean flow in the intra-abdominal part of the umbilical vein was 110 ml/kg/min. This method of measurement is non-invasive and opens new perspectives in studying fetal haemodynamics.  相似文献   

3.
In order to determine the implication of the cerebral vasoconstriction occurring under -Gz acceleration in the mechanism of the push-pull effect, four healthy male non-pilots were submitted to a control centrifugation at +2 Gz, and then to an experimental run with identical +2 Gz plateau, but preceded by -2 Gz exposure. Cerebral blood flow velocity (CBFV), pulsatility index, and resistance index (RI) were continually measured with a transcranial Doppler instrument. The decrease in blood pressure and in CBFV was more important during the experimental run, when the change in RI was not different. We concluded that the cerebral vasoconstriction occurring under -2 Gz exposure seems not to be a major contributor in the mechanism of the push-pull effect appearing during subsequent +2 Gz acceleration.  相似文献   

4.
Bilateral laparoscopic ovariectomy was performed in six female donkeys. Laparoscopic ovariectomy was performed in standing position by using a new laparoscopic instrument which was developed by the authors. We used the instrument for isolation, coagulation and cutting of mesovarium. One laparoscope portal and two instrument portals were located in each paralumbar fossa. The ovary was removed through an enlarged second portal. The contralateral ovary was removed through the opposite paralumbar fossa. Hemostasis, coagulation and cutting of the mesovarium were achieved successfully using the new laparoscopic instrument. The time required for removal of each ovary was between 2 and 4 min (average 2.8 min). While the total time of unilateral ovariectomy was between 10 and 15 min (average 12 min). No additional ligature was required in all operations. There was no complication, hemorrhage or oozing of blood from the mesovarium during or after the operations. In conclusion, laparoscopic ovariectomy in donkeys by using this new instrument was safe and effective. The new instrument reduced the time of operation and provided a viable hemostasis and coagulation for blood vessels within the mesovarium. Also cutting of the mesovarium was very easy.  相似文献   

5.
Pulsed ultrasound Doppler velocity meters (PUDVM) permit noninvasive blood velocity measurements. The emitted ultrasound beam characteristics primarily determine the resolution of the instrument when recording velocity profiles. The sample volume, the small region over which velocity information data are detected, was found to be > 2·3 mm3 depending on the transducer disk dia., distance in front of the disk, sampling time increment, and pulse length. The shape of the sample volume approximates a cylinder in the near field and a frustrum of a cone in the far field. The end surfaces of the sample volume were affected by the emitted pulse shape. Ultrasonic beam cross-sections were found to be smaller than predicted by theory due to the finite threshold levels of the PUDVM. The variation of the sample volume with range was illustrated by steady laminar flow velocity profile measurements in rigid tubes. The accuracy of velocity measurements was within 5 per cent with slightly larger deviations occurring near the walls due to the finite sample volume.  相似文献   

6.
This paper describes a novel medical instrument that produces an image of blood flow in the capillaries under the skin surface. A laser beam is used to detect blood cell motion from the Doppler broadening of the laser light scattered from the skin. The image is generated by scanning the laser beam in a raster. The design of a practical clinical instrument is outlined and some preliminary results are presented.  相似文献   

7.
经颅多普勒超声波对80例偏头痛病人与110例正常对照组血流速度进行检测.结果发现病例组血流速度异常为87.5%。根据血流速度改变,本组分为血流速度增快型与血流速度减慢型,这有助于偏头痛的临床诊断。  相似文献   

8.
The effect of blood velocity pulsations on bioheat transfer is studied. A simple model of a straight rigid blood vessel with unsteady periodic flow is considered. A numerical solution that considers the fully coupled Navier-Stokes and energy equations is used for the simulations. The influence of the pulsation rate on the temperature distribution and energy transport is studied for four typical vessel sizes: aorta, large arteries, terminal arterial branches, and arterioles. The results show that: the pulsating axial velocity produces a pulsating temperature distribution; reversal of flow occurs in the aorta and in large vessels, which produces significant time variation in the temperature profile. Change of the pulsation rate yields a change of the energy transport between the vessel wall and fluid for the large vessels. For the thermally important terminal arteries (0.04-1 mm), velocity pulsations have a small influence on temperature distribution and on the energy transport out of the vessels (8 percent for the Womersley number corresponding to a normal heart rate). Given that there is a small difference between the time-averaged unsteady heat flux due to a pulsating blood velocity and an assumed nonpulsating blood velocity, it is reasonable to assume a nonpulsating blood velocity for the purposes of estimating bioheat transfer.  相似文献   

9.
J C Misra  B K Kar 《Biorheology》1989,26(1):23-35
Taking into consideration the slip velocity at the wall of a blood vessel, a mathematical model is developed in the paper for the study of blood flow through a mammalian blood vessel in the presence of a stenosis. By employing the momentum integral technique, analytical expressions for the velocity profile, pressure gradient and skin-friction are derived. The condition for an adverse pressure gradient is also deduced. It is observed that the slip velocity bears the potential to influence the velocity distribution of blood to a remarkable extent and to reduce considerably the pressure-gradient as well as the skin-friction.  相似文献   

10.
S Hanai  T Yamaguchi  S Kikkawa 《Biorheology》1991,28(1-2):107-116
Turbulent velocity fluctuations were measured and analyzed in the canine ascending aorta using a hot-film anemometer. Blood flow rate and temperature were stabilized using a special bypass technique. Blood pressure was elevated by Methoxamine infusion. Turbulence components were extracted from measured data using an ensemble averaging technique. Turbulence intensity correlated best with blood flow rate although the variance was relatively large, especially when the blood flow velocity was high. When pooled data were grouped into subclasses using peak aortic flow velocity as the criteria, turbulence intensity correlated well with aortic systolic blood pressure in each of the subclasses. Spectral bandwidth correlated with aortic pressure in the same manner. In summary, turbulence in the aorta developed when blood pressure was high. Both an increase of turbulence intensity and an widening of turbulence spectra may be ascribed to a stiffening of the aortic wall due to an elevation of blood pressure.  相似文献   

11.
An in vitro instrument is described which is designed to measure effective viscosity of blood in arteriolar size tubes at physiologically nominal flow rates, mimicking flow in the microcirculation. The 41-micron microviscosimeter is accurate within 2% when tested against viscosity standards and is reproducible within 2% using blood samples. Because the full-scale instrument response time is 3 s, either fresh or anticoagulated blood samples may be used. Measured over the nominal range of blood flow rate (Q), effective blood viscosity was found to be an increasing, decreasing, or flat function of Q, depending upon the particular individual being tested. A reference group of 81 young, healthy subjects was used to define viscous resistance (VR), a new parameter that provides for quantitative viscosity comparisons between individuals or groups without hematocrit manipulation of blood samples. As examples of the microviscosimeter's use, a group of 118 subjects was used to test for VR variation between various group subsets. No difference in VR was found between men and women; exercisers had lower VR than nonexercisers; and overweight subjects had more viscous blood than non-overweight subjects. The instrument will be useful for in vitro investigations of effective viscosity and viscous resistance in the microcirculation.  相似文献   

12.
We have used a stirred, temperature-regulated, reaction vessel separated by a Teflon membrane from the ion source of a mass spectrometer to monitor continuously the time course of disappearance of C18O16O, mass 46, at chemical equilibrium as the 18O exchanges with 16O in water. This instrument is sensitive to less than 0.01 mm Hg of partial pressure of C18O16O with a response time of less than 3 s. The equation of Mills and Urey was used to calculate the hydration velocity constant for uncatalyzed or catalyzed homogenous solutions from the exponential disappearance of mass 46. Addition of red blood cells to the reaction mixture produces biphasic (double exponential) disappearance curve for mass 46. A theory of this process has been developed which describes the time course of [C18O16O] as a function of the catalytic factor for intracellular carbonic anhydrase (A) and the permeability of the cell membrane to HCO3- (P) in addition to the known values; water volume of the cells in the suspension, extracellular pH, the extracellular hydration reaction velocity constant, ku, and dehydration reaction velocity constant, ku. Using this theory, A and P were estimated from the disappearance curve for mass 46 at different values of hematocrit in the reaction mixture, both by a trial and error curve fitting procedure and by a more convenient graphical linearization method. The values of A and P obtained were very sensitive to small amounts of lysis (less than 1%), but the graphical method of analysis minimized this effect. For the blood cells of five normal subjects suspended in 24 mM bicarbonate in 145 mM NaCl at pH 7.4 and 37 degrees, using the graphical method we obtained an average value of 9,906 for A as compared to 19,900 for a comparable concentration of hemolysate. Correcting for a lower pH and chloride concentration inside the cell the latter figure would reduce to 17,500, still 80% higher than the intracellular value. The reason for this discrepancy is not clear. The average permeability of the red cell to bicarbonate ion was 3 X 10(-4) cm/s.  相似文献   

13.
A continuous two-phase (air-liquid), slug flow, tubular heat exchanger was developed for microbial thermal inactivation research to give exposure times and temperatures in the range of high-temperature, short-time milk pasteurization as well as heat-treated sample volumes of at least 2 ml. The use of air to compartmentalize the liquid in the capillary tubing prevented the development of laminar flow, which enabled precise identification of the residence time of the fastest flowing particles in the heating, holding, and cooling sections of the instrument. Residence time distributions were quantitated by measuring the degree of spreading of radioactive tracers for water, whole milk, chocolate milk, cream, and ice-cream mix with holding temperatures from 50 to 72 C, holding times from 2 to 60 sec, and heating and cooling times of 1.7 sec each. For a holding time of 60 sec and a fastest particle velocity of 10.2 cm/sec, the velocity ratios of the fastest moving particle to the median particle were 1.05, 1.05, 1.10, and 1.13 for whole milk, chocolate milk, cream, and ice-cream mix, respectively. With shorter holding times, these velocity ratios were even closer to unity. These velocity ratios indicated that the instrument would be an effective tool for thermal inactivation research on microorganisms suspended in homogeneous fluids with a viscosity of 15 centipoises or less at the exposure temperature.  相似文献   

14.
Ascending aortic blood velocity was measured in the baboon (Papio ursinus) by using continuous wave Doppler ultrasound. The blood flow parameters thus obtained were compared to those by the standardized radionuclide technique. It appears that, due to the anatomical position of the ascending aorta and brachiocephalic trunks in relation to the ultrasound beam, Doppler ultrasound does not provide an accurate method of measuring aortic blood velocity in the baboon, which could be the reason for the poor correlation of the results from the two techniques.  相似文献   

15.
Indocyanine green (ICG) dye angiography has been used by ophthalmologists for routine examination of the choroidal vasculature in human eyes for more than 20 years. In this study, a new approach is developed to extract information from ICG dye angiograms about blood velocity distribution in the choriocapillaris and its feeding blood vessels. ICG dye fluorescence intensity rise and decay curves are constructed for each pixel location in each image of the choriocapillaris in an ICG angiogram. It is shown that at each instant of time the magnitude of the local instantaneous dye velocity in the choriocapillaris is proportional to both the slope of the ICG dye fluorescence intensity curve and the dye concentration. This approach leads to determination of the absolute value of blood velocity in the choriocapillaris, assuming an appropriate scaling, or conversion factor can be determined. It also enables comparison of velocities in different regions of the choriocapillaris, since the conversion factor is independent of the vessel location. The computer algorithm developed in this study can be used in clinical applications for diagnostic purposes and for assessment of the efficacy of laser therapy in human eyes.  相似文献   

16.
A newly developed, dual-function pH and PCO2 sensor was evaluated in this study. The sensors were placed in the femoral arteries of dogs anesthetized with sodium pentobarbital. Comparisons were made between systemic arterial pH and PCO2 measured using the sensor and those measured from blood samples drawn at 15-min intervals over a 7-h period using a bench instrument. The mean pH of the bench instrument measurements was 7.43. The mean difference of the sensor measurements from the bench instrument measurements for 207 comparisons was 0.0003 pH +/- 0.061 SD. The mean PCO2 of the bench instrument measurements was 40 mmHg. The mean difference of the sensor measurements from those of the bench instrument for 212 comparisons was -1.43 mmHg +/- 5.17 SD. The sensors performed equally well in the presence of metabolic or respiratory acidosis and alkalosis. The dual-function sensors evaluated in this study are useful for trend monitoring of pH and PCO2 over at least a 7-h period without recalibration. With improvement in the consistency of sensor construction, these sensors will be reliable in vivo sensing devices for blood pH and PCO2 and thus valuable research and clinical instruments.  相似文献   

17.
To obtain a smaller sample volume and a suitable sample position for the measurement of blood velocity, we fabricated a laser Doppler velocimeter (LDV) with a dual-fiber pickup. The two fibers (clad: 62.5 micron and core: 50 micron) were placed side by side. An He-Ne laser was introduced into the blood through one fiber and the backscattered light was collected by the other fiber. The Doppler signal was analyzed by a spectrum analyzer. The spectrum of the Doppler shift frequency showed a sharp peaked pattern for both forward and reverse flows and exhibited an excellent correlation with the known blood velocity. The blood velocity in the poststenotic portion of canine coronary artery was successfully measured by the dual-fiber LDV. These results indicate that the dual-fiber LDV is useful for measuring blood velocity accurately with a small sample volume even in disturbed flow fields.  相似文献   

18.
A population balance model was developed for wheat starch hydrolysis to simulate the performance parameters of a viscosity-based device, known as the Falling Number instrument. The instrument is widely used as an indirect means to gauge the level of preharvest sprout activity in cereal grains such as wheat and barley. The model consists of three competing kinetics: starch gelatinization, enzymatic hydrolysis, and enzyme thermal deactivation. Using established principles of starch rheology and fluid mechanics, the model simulates the velocity profiles of the falling stirrer, starch gel viscosity, and the Falling Number readings at various levels of alpha-amylase. Model predictions for the velocity of the stirrer at any time during the downward fall, as well as the prediction of the total time needed for the fall, defined as the Falling Number, were in fair agreement with experimental measurements. There was better agreement between the modeled viscosity and the final viscosity of the starch gel as measured by a precision rheometer than there was with the measured Falling Number.  相似文献   

19.
Microscale blood flow is characterised by heterogeneous distributions of hematocrit, viscosity and velocity. In microvascular bifurcations, cells are unevenly distributed between the branches, and this effect can be amplified in subsequent branches depending on a number of parameters. We propose an approach to infer hematocrit profiles of human blood flowing through a bifurcating microchannel. The influence of aggregation, induced by the addition of Dextran 2000 to the samples, is also considered. Averaged values indicate plasma skimming, particularly in the presence of red blood cell (RBC) aggregation. Using an empirical model, the hematocrit profiles are used to estimate local relative viscosity distributions. Simulations are used to predict how the non-uniform viscosity influences the velocity profiles. Comparing these data to velocity profiles of RBCs measured using particle image velocimetry provides validation of the model. It is observed that aggregation blunts velocity profiles after a long straight section of channel. Downstream of the bifurcation, skewing of the velocity profiles is detected, which is enhanced by aggregation. The proposed methodology is capable of providing hitherto unreported information on important aspects of microscale blood rheology.  相似文献   

20.
Our previous investigations demonstrated that glucocorticoids released in response to stress protect gastric mucosa against stress-induced ulceration. This study was designed to determine whether gastric microcirculation is involved in the mechanism of gastroprotective glucocorticoid action. For this we evaluated the effects of deficiency of glucocorticoid production during 3 hr water-restraint stress and corticosterone replacement on the stress-induced gastric erosions, gastric microcirculation and arterial pressure in rats. The stress was produced in awake rats and gastric microcirculation and arterial pressure were evaluated in animals anesthetized in 3 hr after the onset of water-restraint stress. An in vivo microscopy technique for the direct visualization of gastric microcirculation was employed. The gastric submucosal and the superficial mucosal microvessels were monitored on television screen through a microscope and the pictures were stored by microfilming for the analysis of red blood cell velocity and vessel diameter. Gastric microcirculation was estimated on the base of both the volume blood flow velocity in submucosal microvessels and the diameter of superficial mucosal venous microvessels. Gastric erosions were quantitated by measuring the area of damage. Plasma corticosterone levels were also measured after 3 hr stress by fluorometry. Water-restraint stress induced an increase in corticosterone level, an appearance of gastric erosions, a decrease in volume blood flow velocity of submucosal microvessels, a dilatation of superficial mucosal microvessels, a decrease in arterial pressure. The deficiency of glucocorticoid production during water-restraint stress promoted the stress-induced gastric ulceration, a dilatation of mucosal microvessels, a decrease of blood flow velocity in submucosal microvessels and of arterial pressure. Corticosterone replacement eliminated the effects of deficiency of glucocorticoid production on all of the parameters under study. Thus, the stress-induced corticosterone rise decreased gastric ulceration, restricted both the reduction of blood flow velocity in submucosal microvessels and a dilatation of superficial mucosal venous microvessels during water-restraint stress. These data suggest that the gastroprotective action of glucocorticoids during stress may be provided by the maintenance of gastric blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号