首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular methods as applied to the biogeography of single species (phylogeography) or multiple codistributed species (comparative phylogeography) have been productively and extensively used to elucidate common historical features in the diversification of the Earth's biota. However, only recently have methods for estimating population divergence times or their confidence limits while taking into account the critical effects of genetic polymorphism in ancestral species become available, and earlier methods for doing so are underutilized. We review models that address the crucial distinction between the gene divergence, the parameter that is typically recovered in molecular phylogeographic studies, and the population divergence, which is in most cases the parameter of interest and will almost always postdate the gene divergence. Assuming that population sizes of ancestral species are distributed similarly to those of extant species, we show that phylogeographic studies in vertebrates suggest that divergence of alleles in ancestral species can comprise from less than 10% to over 50% of the total divergence between sister species, suggesting that the problem of ancestral polymorphism in dating population divergence can be substantial. The variance in the number of substitutions (among loci for a given species or among species for a given gene) resulting from the stochastic nature of DNA change is generally smaller than the variance due to substitutions along allelic lines whose coalescence times vary due to genetic drift in the ancestral population. Whereas the former variance can be reduced by further DNA sequencing at a single locus, the latter cannot. Contrary to phylogeographic intuition, dating population divergence times when allelic lines have achieved reciprocal monophyly is in some ways more challenging than when allelic lines have not achieved monophyly, because in the former case critical data on ancestral population size provided by residual ancestral polymorphism is lost. In the former case differences in coalescence time between species pairs can in principle be explained entirely by differences in ancestral population size without resorting to explanations involving differences in divergence time. Furthermore, the confidence limits on population divergence times are severely underestimated when those for number of substitutions per site in the DNA sequences examined are used as a proxy. This uncertainty highlights the importance of multilocus data in estimating population divergence times; multilocus data can in principle distinguish differences in coalescence time (T) resulting from differences in population divergence time and differences in T due to differences in ancestral population sizes and will reduce the confidence limits on the estimates. We analyze the contribution of ancestral population size (theta) to T and the effect of uncertainty in theta on estimates of population divergence (tau) for single loci under reciprocal monophyly using a simple Bayesian extension of Takahata and Satta's and Yang's recent coalescent methods. The confidence limits on tau decrease when the range over which ancestral population size theta is assumed to be distributed decreases and when tau increases; they generally exclude zero when tau/(4Ne) > 1. We also apply a maximum-likelihood method to several single and multilocus data sets. With multilocus data, the criterion for excluding tau = 0 is roughly that l tau/(4Ne) > 1, where l is the number of loci. Our analyses corroborate recent suggestions that increasing the number of loci is critical to decreasing the uncertainty in estimates of population divergence time.  相似文献   

2.
Polymorphic species, in which multiple variants coexist within a population, are often used as model systems in evolutionary biology. Recent research has been dominated by the hypothesis that polymorphism can be a precursor to speciation. To date, the majority of research regarding polymorphism and speciation has focused on whether polymorphism is maintained within a population or whether morphs within populations may diverge to form separate species (sympatric speciation); however, the geographical context of speciation in polymorphic systems is likely to be both diverse and complex. In this review, we draw attention to the geographic variation in morph composition and frequencies that characterises many, if not most polymorphic species. Recent theoretical and empirical developments suggest that such variation in the number, type and frequency of morphs present among populations can increase the probability of speciation. Thus, the geographical context of a polymorphism requires a greater research focus. Here, we review the prevalence, causes and evolutionary consequences of geographic variation in polymorphism in colour‐polymorphic animal species. The prevalence and nature of geographic variation in polymorphism suggests that polymorphism may be a precursor to and facilitate speciation more commonly than appreciated previously. We argue that a better understanding of the processes generating geographic variation in polymorphism is vital to understanding how polymorphism can promote speciation.  相似文献   

3.
Speciation in brood-parasitic indigobirds (genus Vidua) is a consequence of behavioural imprinting in both males and females. Mimicry of host song by males and host fidelity in female egg laying result in reproductive isolation of indigobirds associated with a given host species. Colonization of new hosts and subsequent speciation require that females occasionally lay eggs in the nests of novel hosts but the same behaviour may lead to hybridization when females parasitize hosts already associated with other indigobird species. Thus, retained ancestral polymorphism and ongoing hybridization are two alternative explanations for the limited genetic differentiation among indigobird species. We tested for genetic continuity of indigobird species using mitochondrial sequences and nuclear microsatellite data. Within West Africa and southern Africa, allopatric populations of the same species are generally more similar to each other than to sympatric populations of different species. Likewise, a larger proportion of genetic variation is explained by differences between species than by differences between locations in alternative hierarchical AMOVAS, suggesting that the rate of hybridization is not high enough to homogenize sympatric populations of different species or prevent genetic differentiation between species. Broad sharing of genetic polymorphisms among species, however, suggests that some indigobird species trace to multiple host colonization events in space and time, each contributing to the formation of a single interbreeding population bound together by songs acquired from the host species.  相似文献   

4.
Due to genetic variation in the ancestor of two populations or two species, the divergence time for DNA sequences from two populations is variable along the genome. Within genomic segments all bases will share the same divergence-because they share a most recent common ancestor-when no recombination event has occurred to split them apart. The size of these segments of constant divergence depends on the recombination rate, but also on the speciation time, the effective population size of the ancestral population, as well as demographic effects and selection. Thus, inference of these parameters may be possible if we can decode the divergence times along a genomic alignment. Here, we present a new hidden Markov model that infers the changing divergence (coalescence) times along the genome alignment using a coalescent framework, in order to estimate the speciation time, the recombination rate, and the ancestral effective population size. The model is efficient enough to allow inference on whole-genome data sets. We first investigate the power and consistency of the model with coalescent simulations and then apply it to the whole-genome sequences of the two orangutan sub-species, Bornean (P. p. pygmaeus) and Sumatran (P. p. abelii) orangutans from the Orangutan Genome Project. We estimate the speciation time between the two sub-species to be thousand years ago and the effective population size of the ancestral orangutan species to be , consistent with recent results based on smaller data sets. We also report a negative correlation between chromosome size and ancestral effective population size, which we interpret as a signature of recombination increasing the efficacy of selection.  相似文献   

5.
Adaptive radiation is usually thought to be associated with speciation, but the evolution of intraspecific polymorphisms without speciation is also possible. The radiation of cichlid fish in Lake Victoria (LV) is perhaps the most impressive example of a recent rapid adaptive radiation, with 600+ very young species. Key questions about its origin remain poorly characterized, such as the importance of speciation versus polymorphism, whether species persist on evolutionary time scales, and if speciation happens more commonly in small isolated or in large connected populations. We used 320 individuals from 105 putative species from Lakes Victoria, Edward, Kivu, Albert, Nabugabo and Saka, in a radiation-wide amplified fragment length polymorphism (AFLP) genome scan to address some of these questions. We demonstrate pervasive signatures of speciation supporting the classical model of adaptive radiation associated with speciation. A positive relationship between the age of lakes and the average genomic differentiation of their species, and a significant fraction of molecular variance explained by above-species level taxonomy suggest the persistence of species on evolutionary time scales, with radiation through sequential speciation rather than a single starburst. Finally the large gene diversity retained from colonization to individual species in every radiation suggests large effective population sizes and makes speciation in small geographical isolates unlikely.  相似文献   

6.
Genes of the major histocompatibility complex (MHC) play a central role in adaptive immune responses of vertebrates. They exhibit remarkable polymorphism, often crossing species boundaries with similar alleles or allelic motifs shared across species. This pattern may reflect parallel parasite‐mediated selective pressures, either favouring the long maintenance of ancestral MHC allelic lineages across successive speciation events by balancing selection (“trans‐species polymorphism”), or alternatively favouring the independent emergence of functionally similar alleles post‐speciation via convergent evolution. Here, we investigate the origins of MHC similarity across several species of dwarf and mouse lemurs (Cheirogaleidae). We examined MHC class II variation in two highly polymorphic loci (DRB, DQB) and evaluated the overlap of gut–parasite communities in four sympatric lemurs. We tested for parasite‐MHC associations across species to determine whether similar parasite pressures may select for similar MHC alleles in different species. Next, we integrated our MHC data with those previously obtained from other Cheirogaleidae to investigate the relative contribution of convergent evolution and co‐ancestry to shared MHC polymorphism by contrasting patterns of codon usage at functional vs. neutral sites. Our results indicate that parasites shared across species may select for functionally similar MHC alleles, implying that the dynamics of MHC‐parasite co‐evolution should be envisaged at the community level. We further show that balancing selection maintaining trans‐species polymorphism, rather than convergent evolution, is the primary mechanism explaining shared MHC sequence motifs between species that diverged up to 30 million years ago.  相似文献   

7.
Polymorphisms are common in the natural world and have played an important role in our understanding of how selection maintains multiple phenotypes within extant populations. Studying the evolutionary history of polymorphisms has revealed important features of this widespread form of phenotypic diversity, including its role in speciation, niche breadth, and range size. In the present study, we examined the evolutionary history of a ubiquitous colour polymorphism in the sulphur butterflies (subfamily: Coliadinae) termed the ‘alba’ polymorphism. We investigated the origin and stability of the ‘alba’ polymorphism using ancestral state reconstruction analysis. Our results indicate that the ancestor of the Coliadinae was polymorphic and that this polymorphism has undergone repeated transitions to monomorphism. Repeated loss of polymorphism suggests that the ‘alba’ polymorphism may be relatively unstable over evolutionary time. These results provide a framework for future studies on the origin and maintenance of the ‘alba’ polymorphism and guide the direction of future hypotheses. We discuss these results in light of current understandings of how the ‘alba’ polymorphism is maintained in extant populations.  相似文献   

8.
The genetic structure of bank voles Clethrionomys glareolus was determined from analyses of mitochondrial DNA (mtDNA) sequences, and compared with previous data on geographical synchrony in population density fluctuations. From 31 sample sites evenly spaced out along a 256-km transect in SE Norway a total of 39 distinct mtDNA haplotypes were found. The geographical distribution of the haplotypes was significantly nonrandom, and a cladistic analysis of the evolutionary relationship among haplotypes shows that descendant types were typically limited to a single site, whereas the ancestral types were more widely distributed geographically. This geographical distribution pattern of mtDNA haplotypes strongly indicates that the range and amount of female dispersal is severely restricted and insufficient to account for the previously observed synchrony in population density fluctuations. We conclude that geographical synchrony in this species must be caused by factors that are external to the local population, such as e.g. mobile predators.  相似文献   

9.
Although analyses of intraspecific variability are an important prerequisite for species identification assays, only a few studies have focused on population genetics and historical biogeography of sturgeon species. Here we present the first study on genetic variability of the last remaining Adriatic sturgeon, Acipenser naccarii, derived from mitochondrial and nuclear DNA. Our mitochondrial DNA analyses arranged individuals into three distinguished mitochondrial DNA haplogroups (Po1, Po2 and Buna). Two haplogroups (Po1 and Buna) were correlated to geographical distribution, whereas the third (Po2) was not. It was, however, very closely related to one lineage of its Ponto-Caspian sister species, A. gueldenstaedtii. The distribution of nuclear markers (microsatellites and amplified fragment length polymorphism) was strongly correlated to geographical distribution. An assignment test based on nuclear data placed no specimen of A. naccarii to A. gueldenstaedtii and vice versa. Therefore, the presence of gueldenstaedtii-like haplotypes within the Po population is either the result of a postglacial introgression or an ancestral polymorphism and does not indicate a hybrid population. The most valuable tool for forensic species identification purposes is one diagnostic deletion separating all A. naccarii from A. gueldenstaedtii. As both A. naccarii populations are genetically differentiated, stocking of sturgeon from the Po River in Italy into waters of the Buna River would jeopardize the genetic differences between both populations and should thus be avoided.  相似文献   

10.
The trend for increasing biodiversity from the poles to the tropics is one of the best-known patterns in nature. This latitudinal biodiversity gradient has primarily been documented so far with extant species as the measure of biodiversity. Here, we evaluate the global pattern in biodiversity across latitudes based on the magnitude of genetic population divergence within plant species, using a robust spatial design to compare published allozyme datasets. Like the pattern of plant species richness across latitudes, we expected the divergence among populations of current plant species would have a similar pattern and direction. We found that lower latitudinal populations showed greater genetic differentiation within species after controlling for geographical distance. Our analyses are consistent with previous population-level studies in animals, suggesting a high possibility of tropical peaks in speciation rates associated with observed levels of species richness.  相似文献   

11.
Drosophila melanogaster is widely used as a model in DNA variation studies. Patterns of polymorphism have, however, been affected by the history of this species, which is thought to have recently spread out of Africa to the rest of the world. We analyzed DNA sequence variation in 11 populations, including four continental African and seven non-African samples (including Madagascar), at four independent X-linked loci. Variation patterns at all four loci followed neutral expectations in all African populations, but departed from it in all non-African ones due to a marked haplotype dimorphism at three out of four loci. We also found that all non-African populations show the same major haplotypes, though in various frequencies. A parsimonious explanation for these observations is that all non-African populations are derived from a single ancestral population having undergone a substantial reduction of polymorphism, probably through a bottleneck. Less likely alternatives involve either selection at all four loci simultaneously (including balancing selection at three of them), or admixture between two divergent populations. Small but significant structure was observed among African populations, and there were indications of differentiation across Eurasia for non-African ones. Since population history may result in non-equilibrium variation patterns, our study confirms that the search for footprints of selection in the D. melanogaster genome must include a sufficient understanding of its history.  相似文献   

12.
Patterns of genetic differentiation were analysed and compared in two sympatric species of the endemic Lake Tanganyika cichlid tribe Eretmodini by means of mitochondrial DNA (mtDNA) sequences of the control region and six microsatellite DNA loci. The sample area covers a total of 138 km of mostly uninterrupted rocky shoreline in the Democratic Republic of Congo and includes the entire distribution range of Tanganicodus cf. irsacae that stretches over a distance of 35 km. Both markers detected significant genetic differentiation within and between the two species. T. cf. irsacae contained lower overall genetic variation than Eretmoduscyanostictus, possibly due to its more restricted range of distribution and its smaller effective population sizes. Complete fixation of Tanganicodus mtDNA haplotypes was observed in Eretmodus at two localities, while at two other localities some Tanganicodus individuals possessed Eretmodus mtDNA haplotypes. Taking into account the relatively large average sequence divergence of 6.2% between the two species, as well as the geographical distribution of mtDNA haplotypes in the lake, the observed pattern is more likely to be a consequence of asymmetric introgression than of shared ancestral polymorphism. As there is significant population differentiation between sympatric Tanganicodus and Eretmodus populations, the events of introgressions may have happened after secondary contact, but our data provide no evidence for ongoing gene flow and suggest that both species are reproductively isolated at present time.  相似文献   

13.
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo‐West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.  相似文献   

14.
Genetic structure and phylogeographic patterns of natural populations are of great importance in assessing the conservation status of species. These population properties can be estimated using molecular markers of either mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) to understand the historical, ecological and dispersal patterns that influence genetic exchange within and between populations. Basilinna xantusii is a sexually dimorphic hummingbird endemic to the Baja California Peninsula (BCP). It comprises three ancestral mitochondrial lineages linked to vicariant events, late Pleistocene climate changes and the geographical distribution of oases. This study aimed to determine and understand the current population genetic structure of this hummingbird. The genotypes of 16 microsatellite loci from 100 individuals collected across the geographical range of this species were compared with mtDNA sequences previously published. Cluster analyses identified five populations, two with almost no genetic admixture in the northern part of the BCP and three others with varying levels of admixed ancestry across the BCP. In San José de Magdalena, at the northernmost end of the range of Xantus's Hummingbird, 40% of individuals collected belong to one genetic cluster and the remaining 60% to another, both genetic clusters showing very little admixed ancestry. We hypothesize that, despite being in sympatry, these individuals do not interbreed, unlike the other populations where individuals showed ancestry coefficients of the other genetic groups. The philopatric behaviour of males and the long-range dispersal capacity of females probably determine the observed genetic differentiation pattern. The mito-nuclear discordance detected could be due to the molecular markers used and to female-biased dispersal. Gene flow is asymmetric in this species, being greater from north to south than vice versa, which is probably related to differences in the seasonality of precipitation across the BCP and to urbanization of the oases.  相似文献   

15.
The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans‐species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen‐mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution.  相似文献   

16.
Althoff DM 《Molecular ecology》2008,17(17):3917-3927
Parasitic taxa span an antagonistic continuum, with some parasites inflicting no fitness costs to some that kill the host after feeding. Host-associated differentiation is postulated as a major process facilitating speciation in many parasitic taxa. Here, I examined the importance of host-associated differentiation in a parasitoid wasp that develops on yucca moths in the genus Prodoxus. Prodoxus are specialists on Yucca , and moth speciation is closely tied to differences in microhabitat use within a plant and among host plant species. Parasitoids in the genus Eusandalum have been reared from Prodoxus species distributed across Yucca . Estimates of host-use patterns obtained through rearings of adult wasps were combined with surveys of mitochondrial DNA cytochrome oxidase I sequence data and amplified fragment length polymorphism markers to determine if populations of Eusandalum were genetically structured based on host use. Eusandalum populations were genetically structured based on geographical distance rather than moth host species, microhabitats within plants, or Yucca species. The results are contrary to the patterns observed in the host genus Prodoxus . Although parasitoids exhibit parasite-like characteristics, these results suggest that Eusandalum may be best viewed as a predator. Female wasps are able to utilize any moth species present at a given locality, and there is little likelihood that host specialization may facilitate population subdivision and speciation.  相似文献   

17.
The genetic population structure of a large, wide-ranging marsupial, the red kangaroo ( Macropus rufus ) was assessed using sequence and haplotype frequency data of mitochondrial DNA (mtDNA) from locations across the species range in Australia. Results from sequence data revealed extensive haplotype diversity within the red kangaroo (32/34 sequences were unique). Sequence diversity was distributed within rather than between geographical regions across the species range. Genetic connectivity across the range of the species has therefore been maintained over the long term. On a smaller within-region scale, significant genetic structuring was evident from heterogeneity of haplotype frequencies amongst sampling sites. The geographical scale of panmictic populations differed across the continent with more restricted genetic populations occurring in areas with greater topographic and habitat complexity. We propose that these differences in area of genetic populations are the result of population responses to limiting ecological factors during drought.  相似文献   

18.
The coding region of the mat K gene and two intergenic spacers, psb A-trn H and trn L(UAA)-trn F(GAA), of cpDNA were sequenced to study phylogenetic relationships of 32 Paeonia species. In the psb A-trn H intergenic spacer, short sequences bordered by long inverted repeats have undergone inversions that are often homoplasious mutations. Insertions/deletions found in the two intergenic spacers, mostly resulting from slipped-strand mispairing, provided relatively reliable phylogenetic information. The mat K coding region, evolving more rapidly than the trnL-trn F spacer and more slowly than the psb A-trn H spacer, produced the best resolved phylogenetic tree. The mat K phylogeny was compared with the phylogeny obtained from sequences of internal transcribed spacers (ITS) of nuclear ribosomal DNA. A refined hypothesis of species phylogeny of section Paeonia was proposed by considering the discordance between the nuclear and cpDNA phylogenies to be results of hybrid speciation followed by inheritance of cpDNA of one parent and fixation of ITS sequences of another parent. The Eurasian and western North American disjunct distribution of the genus may have resulted from interrruption of the continuous distribution of ancestral populations of extant peony species across the Bering land bridge during the Miocene. Pleistocene glaciation may have played an important role in triggering extensive reticulate evolution within section Paeonia and shifting distributional ranges of both parental and hybrid species.  相似文献   

19.
Rannala B  Yang Z 《Genetics》2003,164(4):1645-1656
The effective population sizes of ancestral as well as modern species are important parameters in models of population genetics and human evolution. The commonly used method for estimating ancestral population sizes, based on counting mismatches between the species tree and the inferred gene trees, is highly biased as it ignores uncertainties in gene tree reconstruction. In this article, we develop a Bayes method for simultaneous estimation of the species divergence times and current and ancestral population sizes. The method uses DNA sequence data from multiple loci and extracts information about conflicts among gene tree topologies and coalescent times to estimate ancestral population sizes. The topology of the species tree is assumed known. A Markov chain Monte Carlo algorithm is implemented to integrate over uncertain gene trees and branch lengths (or coalescence times) at each locus as well as species divergence times. The method can handle any species tree and allows different numbers of sequences at different loci. We apply the method to published noncoding DNA sequences from the human and the great apes. There are strong correlations between posterior estimates of speciation times and ancestral population sizes. With the use of an informative prior for the human-chimpanzee divergence date, the population size of the common ancestor of the two species is estimated to be approximately 20,000, with a 95% credibility interval (8000, 40,000). Our estimates, however, are affected by model assumptions as well as data quality. We suggest that reliable estimates have yet to await more data and more realistic models.  相似文献   

20.
Species differ in the size of their geographical ranges, but it is unclear how this is affected by the intrinsic properties of various habitat types. Using data on range sizes for 490 species of aquatic Coleoptera from the Iberian Peninsula we show that running-water (lotic) species have much smaller distributional ranges than those occurring in standing water (lentic). This robust association of habitat type and range size has independently arisen in at least four monophyletic coleopteran lineages, in Hydradephaga, Hydrophiloidea, Hydraenidae and Byrrhoidea, and several more times within these main groups. We propose that this pattern is due to different evolutionary dynamics of both habitat types: stagnant water bodies are more likely to completely disappear, requiring frequent migration of resident populations. Rivers and streams, on the contrary, have more temporal and spatial continuity, and therefore permit the long-term persistence of local populations. In less permanent habitats species will require a greater geographical mobility, which indirectly results in a larger size range. The less dispersive populations of running water should also have reduced gene flow, increasing the probability of allopatric speciation, and thus reducing the average range of more widespread ancestral species. These differences in population parameters, and the frequency of transitions between the two habitat types, may have strong macroevolutionary consequences, in particular regarding speciation rates and possible morphological specializations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号