首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polyprotein of infectious pancreatic necrosis virus (IPNV), a birnavirus, is processed by the viral protease VP4 (also named NS) to generate three polypeptides: pVP2, VP4, and VP3. Site-directed mutagenesis at 42 positions of the IPNV VP4 protein was performed to determine the active site and the important residues for the protease activity. Two residues (serine 633 and lysine 674) were critical for cleavage activity at both the pVP2-VP4 and the VP4-VP3 junctions. Wild-type activity at the pVP2-VP4 junction and a partial block (with an alteration of the cleavage specificity) at the VP4-VP3 junction were observed when replacement occurred at histidines 547 and 679. A similar observation was made when aspartic acid 693 was replaced by leucine, but wild-type activity and specificity were found when substituted by glutamine or asparagine. Sequence comparison between IPNV and two birnavirus (infectious bursal disease virus and Drosophila X virus) VP4s revealed that serine 633 and lysine 674 are conserved in these viruses, in contrast to histidines 547 and 679. The importance of serine 633 and lysine 674 is reminiscent of the protease active site of bacterial leader peptidases and their mitochondrial homologs and of the bacterial LexA-like proteases. Self-cleavage sites of IPNV VP4 were determined at the pVP2-VP4 and VP4-VP3 junctions by N-terminal sequencing and mutagenesis. Two alternative cleavage sites were also identified in the carboxyl domain of pVP2 by cumulative mutagenesis. The results suggest that VP4 cleaves the (Ser/Thr)-X-Ala / (Ser/Ala)-Gly motif, a target sequence with similarities to bacterial leader peptidases and herpesvirus protease cleavage sites.  相似文献   

2.
目的:克隆B19病毒XA株VP1u基因,构建真核重组表达载体.方法:从已构建好的B19病毒XA株原核表达载体中获得VP1u基因,将其克隆入真核表达载体plRES2-EGFP中,经酶切鉴定并测序验证后,获得真核表达载体plRES2-EGFP-VP1u.将其转染至HeLa细胞,提取细胞总蛋白,用Western blot技术检测VP1u蛋白的表达.结果:成功构建了携带人B19病毒VP1u基因的真核表达载体plRES2-EGFP-VP1u,荧光显微镜下可见pIRES2-EGFP-VP1u转染HeLa细胞后表达EGFP蛋白而发出绿色荧光,Western blot证明VP1u蛋白在HeLa细胞中表达.结论:成功构建了携带人B19病毒VP1u基因的真核表达载体plRES2-EGFP-VP1u并在HeLa细胞中正确表达,为今后B19病毒VP1u基因疫苗的研究奠定基础.  相似文献   

3.
By different approaches, we characterized the birnavirus blotched snakehead virus (BSNV). The sequence of genomic segment A revealed the presence of two open reading frames (ORFs): a large ORF with a 3,207-bp-long nucleotide sequence and a 417-nucleotide-long small ORF located within the N-terminal half of the large ORF, but in a different reading frame. The large ORF was found to encode a polyprotein cotranslationally processed by the viral protease VP4 to generate pVP2 (the VP2 precursor), a 71-amino-acid-long peptide ([X]), VP4, and VP3. The two cleavage sites at the [X]-VP4 and VP4-VP3 junctions were identified by N-terminal sequencing. We showed that the processing of pVP2 generated VP2 and several small peptides (amino acids [aa] 418 to 460, 461 to 467, 468 to 474, and 475 to 486). Two of these peptides (aa 418 to 460 and 475 to 486) were positively identified in the viral particles with 10 additional peptides derived from further processing of the peptide aa 418 to 460. The results suggest that VP4 cleaves multiple Pro-X-Ala downward arrow Ala motifs, with the notable exception of the VP4-VP3 junction. Replacement of the members of the predicted VP4 catalytic dyad (Ser-692 and Lys-729) confirmed their indispensability in the polyprotein processing. The genomic segment B sequence revealed a single large ORF encoding a putative polymerase, VP1. Our results demonstrate that BSNV should be considered a new aquatic birnavirus species, slightly more related to IBDV than to IPNV.  相似文献   

4.
细小病毒B19壳抗原VP2在大肠杆菌中的表达及血清学检测   总被引:2,自引:2,他引:0  
为了进行B19感染临床的血清学诊断,利用原核表达载体PQE31克隆和表达B19壳蛋白VP2,酶切鉴定PCR产物及PQE31-VP2克隆的正确性,Western-blot证明表达蛋白的特异性,并对其表达条件和纯化条件进行了优选。在D600为0.7,诱导时间为5h时表达量最高。Ni2+亲和色谱,用0.5mol/L咪唑洗脱液洗脱,获得纯化蛋白。利用纯化蛋白检测100份人群血清,免疫斑点法结果为阳性94例,阴性6例;ELISA结果为阳性84例,阴性16例,两种方法结果一致(0.25>P>0.1)。  相似文献   

5.
As is widely recognized, human parvovirus B19 (B19) and human bocavirus (HBoV) are important human pathogens. Obviously, both VP1 unique region (VP1u) of B19 and HBoV exhibit the secreted phospholipase A2 (sPLA2)-like enzymatic activity and are recognized to participate in the pathogenesis of lower respiratory tract illnesses. However, exactly how, both VP1u from B19 and HBoV affect tight junction has seldom been addressed. Therefore, this study investigates how B19-VP1u and HBoV-VP1u may affect the tight junction of the airway epithelial A549 cells by examining phospholipase A2 activity and transepithelial electrical resistance (TEER) as well as performing immunoblotting analyses. Experimental results indicate that TEER is more significantly decreased in A549 cells by treatment with TNF-α (10 ng), two dosages of B19-VP1u and BoV-VP1u (400 ng and 4000 ng) or bee venom PLA2 (10 ng) than that of the control. Accordingly, more significantly increased claudin-1 and decreased occludin are detected in A549 cells by treatment with TNF-α or both dosages of HBoV-VP1u than that of the control. Additionally, more significantly decreased Na+/K+ ATPase is observed in A549 cells by treatment with TNF-α, high dosage of B19-VP1u or both dosages of BoV-VP1u than that of the control. Above findings suggest that HBoV-VP1u rather than B19 VP1u likely plays more important roles in the disruption of tight junction in the airway tract. Meanwhile, this discrepancy appears not to be associated with the secreted phospholipase A2 (sPLA2)-like enzymatic activity.  相似文献   

6.
【目的】制备人细小病毒B19-VP1u的多克隆抗体,探究VP1u多克隆抗体及其保守区外N端氨基酸对病毒磷脂酶A2活性的影响。【方法】首先通过分子克隆方法构建相应原核表达载体;利用原核表达系统纯化含MBP标签的VP1u全长及N端系列截短突变融合蛋白;接着免疫新西兰大白兔制备全长VP1u蛋白的多克隆抗体;最后利用磷脂酶A2活性检测试剂盒检测了纯化蛋白的磷脂酶A2活性。【结果】Western blot及免疫荧光实验证实制备的多克隆抗体具有较高的特异性;磷脂酶A2活性检测发现全长VP1u-MBP融合蛋白具有一定的活性,该活性可以被VP1u的抗体抑制;N端保守区外截短系列蛋白的酶活检测发现,N端截掉12个氨基酸时酶活降低53%,截掉67个氨基酸时酶活性几乎完全丧失。【结论】首次发现VP1u保守区外N端氨基酸,尤其是第12个氨基酸前的区域以及第22-67个氨基酸之间的区域,对sPLA2活性的保持具有重要意义,推测该区域可能对维持正常的蛋白构象起重要的作用;而其特异性多克隆抗体的制备也为进一步研究B19病毒VP1u在病毒复制周期的作用奠定基础。  相似文献   

7.
Infectious bursal disease virus (IBDV), a member of the Birnaviridae family, is the causative agent of one of the most important infectious poultry diseases. Major aspects of the molecular biology of IBDV, such as assembly and replication, are as yet poorly understood. We have previously shown that encapsidation of the putative virus-encoded RNA-dependent RNA polymerase VP1 is mediated by its interaction with the inner capsid protein VP3. Here, we report the characterization of the VP1-VP3 interaction. RNase A treatment of VP1- and VP3-containing extracts does not affect the formation of VP1-VP3 complexes, indicating that formation of the complex requires the establishment of protein-protein interactions. The use of a set of VP3 deletion mutants allowed the mapping of the VP1 binding motif of VP3 within a highly charged 16-amino-acid stretch on the C terminus of VP3. This region of VP3 is sufficient to confer VP1 binding activity when fused to an unrelated protein. Furthermore, a peptide corresponding to the VP1 binding region of VP3 specifically inhibits the formation of VP1-VP3 complexes. The presence of Trojan peptides containing the VP1 binding motif in IBDV-infected cells specifically reduces infective virus production, thus showing that formation of VP1-VP3 complexes plays a critical role in IBDV replication.  相似文献   

8.
BACKGROUND: The herpes simplex virus type 1 (HSV-1) VP22 protein has the property to mediate intercellular trafficking of heterologous proteins fused to its C- or N-terminus. We have previously shown improved delivery and enhanced therapeutic effect in vitro and in vivo with a P27-VP22 fusion protein. In this report, we were interested in studying the spread and biological activity of VP22 fused to the P53 tumor suppressor. METHODS: Expression of the VP22-P53 and P53-VP22 fusion proteins was shown by Western blot and intercellular spreading was monitored by immunofluorescence on transiently transfected cells. In vitro antiproliferative activity of wild-type (wt) P53 and P53-VP22 was assessed by proliferation assays and transactivating ability was studied by a reporter gene test and a gel-shift assay. Antitumor activity was also tested in vivo by intratumoral injections of naked DNA in a model of subcutaneous tumors implanted in nude mice. RESULTS: Our results show that the C-terminal fusion or the N-terminal P53-VP22 fusion proteins are not able to spread as efficiently as VP22. Moreover, we demonstrate that VP22-P53 does not possess any transactivating ability. P53-VP22 has an antiproliferative activity, but this activity is not superior to the one of P53 alone, in vitro or in vivo. CONCLUSIONS: Our study indicates that a gene transfer strategy using VP22 cannot be considered as a universal system to improve the delivery of any protein.  相似文献   

9.
[目的]探索犬细胞毒性T细胞相关抗原-4(cytotoxic T lymphocyte-associated antigen-4,CTLA-4)胞外区作为免疫佐剂的可行性.[方法]根据已发表序列设计引物,用RT-PCR扩增CTLA-4胞外区编码序列,用PCR扩增犬细小病毒(canine parvovirus,CPV)VP2蛋白主要抗原表位基因片段VP2S,将VP2S克隆入含和不含CTLA-4胞外区基因片段的原核表达质粒pQE-31;用获得的重组质粒pQE-CTLA-4-VP2S和pQE-VP2S转化大肠杆菌,并进行诱导表达;用相同剂量的重组蛋白VP2S和CTLA-4-VP2S免疫小鼠.用间接ELISA和血凝抑制试验比较两个免疫组的抗体水平.[结果]经过30次循环PCR扩增后,琼脂糖凝胶电泳显示预期大小的扩增产物;序列测定结果显示,克隆的毕格犬CTLA-4胞外区与已发表序列的核苷酸同源性为99.2%,氨基酸序列同源性为98.4%,结合B7分子的六肽基序(MYPPPY)无变化:VP2S与已发表CPV VP2的核苷酸序列同源性为99%,氨基酸序列同源性为98.6%:经IPTG诱导后,两种重组大肠杆菌表达预期的29kDa VP2S和42kDaCTLA-4-VP2S重组蛋白,两者均能被CPV抗血清识别;间接ELISA和血凝抑制试验结果显示,CTLA-4-VP2S免疫组的抗体产生时间为初免后第2周,抗体高峰期为初免后第4周,而VP2S免疫组的抗体产生时间为初免后第4周,抗体高峰期为初免后第5周,两个试验组高峰期ELISA抗体效价和血凝抑制抗体效价分别相差100倍和10倍.[结论]犬CTLA-4胞外区可作为分子佐剂促进CPV VP2蛋白抗体的产生.  相似文献   

10.
Recombination between two strains is a known phenomenon for enteroviruses replicating within a single cell. We describe a recombinant strain recovered from human stools, typed as coxsackievirus B4 (CV-B4) and CV-B3 after partial sequencing of the VP1 and VP2 coding regions, respectively. The strain was neutralized by a polyclonal CV-B3-specific antiserum but not by a CV-B4-specific antiserum. The nucleotide sequence analysis of the whole structural genomic region showed the occurrence of a recombination event at position 1950 within the VP3 capsid gene, in a region coding for the 2b antigenic site previously described for CV-B3. This observation evidences for the first time the occurrence of an interserotypic recombination within the VP2-VP3-VP1 capsid region between two nonpoliovirus enterovirus strains. The neutralization pattern suggests that the major antigenic site is located within the VP2 protein.  相似文献   

11.
The VP1 unique region (VP1u) of human parvovirus B19 (B19V) is the immunodominant part of the viral capsid. Originally inaccessible, the VP1u becomes exposed upon primary attachment to the globoside receptor. To study the function of the exposed VP1u in B19V uptake, we expressed this region as a recombinant protein. Here, we report that purified recombinant VP1u binds and is internalized in UT7/Epo cells. By means of truncations and specific antibodies, we identified the most N-terminal amino acid residues of VP1u as the essential region for binding and internalization. Furthermore, the recombinant VP1u was able to block B19V uptake, suggesting that the protein and the virus undertake the same internalization pathway. Assays with different erythroid and nonerythroid cell lines showed that the N-terminal VP1u binding was restricted to a few cell lines of the erythroid lineage, which were also the only cells that allowed B19V internalization and infection. These results together indicate that the N-terminal region of VP1u is responsible for the internalization of the virus and that the interacting receptor is restricted to B19V-susceptible cells. The highly selective uptake mechanism represents a novel determinant of the tropism and pathogenesis of B19V.  相似文献   

12.
制备抗细小病毒B19-VP2单克隆抗体,用于检测人血清中的B19抗原,辅助诊断相关疾病;也可用于制备人类细小病毒基因工程疫苗。用纯化的基因工程表达的B19-VP2蛋白免疫BALB/c小鼠,取免疫小鼠的脾细胞和小鼠骨髓瘤Sp2/0细胞融合,有限稀释法克隆细胞。ELISA及IF证明抗体特异性。克隆筛选出4株细胞,并初步建立了检测B19-VP2抗原的双抗体夹心酶联免疫吸附试验,为双抗体夹心法检测B19抗原为临床相关疾病诊断提供了检测手段。  相似文献   

13.
We have identified a region related to the protease domain of bacterial and organelle ATP-dependent Lon proteases in virus protein 4 (VP4) of infectious bursal disease virus strain P2 (IBDVP2), a two-segmented double-stranded RNA virus. Unlike canonical Lons, IBDVP2 VP4 possesses a proteinase activity though it lacks an ATPase domain. Ser652 and Lys692 of IBDVP2 VP4 are conserved across the Lon/VP4 family and are essential for catalysis. Lys692 has the properties of a general base, increasing the nucleophilicity of Ser652; a similar catalytic dyad may function in the other Lons. VP4 can cleave in trans and is responsible for the interdomain proteolytic autoprocessing of the pVP2- VP4-VP3 polyprotein encoded by RNA segment A. VP2, which is later derived from pVP2, and VP3 are major capsid proteins of birnaviruses. Results of the characterization of a range of the IBDVP2 VP4 mutants in cell cultures implicate VP4 in trans-activation of the synthesis of VP1, putative RNA-dependent RNA polymerase encoded by RNA segment B, and in cleavage rate-dependent control of process(es) crucial for the generation of the infectious virus progeny.  相似文献   

14.
为了获得既可预防猪细小病毒感染又能促进生长的嵌合病毒样颗粒疫苗,以PPV NJ-a株基因组DNA为模板扩增VP2基因片段,在VP2基因N端融合人工合成的4拷贝生长抑素基因,构建杆状病毒转移载体pFast-SS4-VP2。通过转化DH10Bac感受态细胞,pFast-SS4-VP2与穿梭载体Bacmid重组,获得重组Bacmid,命名为rBacmid-SS4-VP2。rBacmid-SS4-VP2转染Sf-9细胞,获得重组病毒rBac-SS4-VP2。SDS-PAGE与Western blotting鉴定可见约68 kDa的rSS4-VP2条带;rBac-SS4-VP2感染细胞IFA检测产生很强的特异性绿色荧光;感染细胞超薄切片电镜观察到大量特征性病毒样颗粒。将重组蛋白分别辅以铝胶、IMS和白油不同佐剂免疫小鼠,通过检测免疫小鼠VP2特异性ELISA抗体、PPV特异性中和抗体、生长抑素的抗体水平及生长激素水平来评价嵌合病毒样颗粒的免疫原性。结果表明,辅以铝胶与IMS佐剂重组蛋白组均产生了与PPV全毒组相似的ELISA抗体与中和抗体反应;重组蛋白免疫组均产生较好的针对生长抑素的抗体反应;免疫小鼠体内生长激素的水平明显升高;其中以铝胶佐剂组产生的各抗体水平最高,白油佐剂组各抗体水平最低。为以后生产安全、有效的颗粒化亚单位疫苗提供了一个新的设计思路,又为应用病毒样颗粒递呈外源肽,从而生产多联亚单位疫苗奠定了基础。  相似文献   

15.
M Lizano  S Lpez    C F Arias 《Journal of virology》1991,65(3):1383-1391
We have previously reported the synthesis in Escherichia coli of polypeptide MS2-VP8', which contains the amino-terminal half of the SA114fM VP4 protein fused to MS2 bacteriophage polymerase sequences (C. F. Arias, M. Lizano, and S. López, J. Gen. Virol. 68:633-642, 1987). In this work we have synthesized the carboxy-terminal half of the VP4 protein also fused to the MS2 polymerase. This protein, designated MS2-VP5', was recognized by sera to the complete virion and was able to induce antibodies to the virus when administered to mice; however, these antibodies had no neutralizing activity. The two chimeric polypeptides were tested for their ability to agglutinate erythrocytes and to prime the immune system of mice. Bacterial lysates enriched for the MS2-VP8' hybrid polypeptide, but not those enriched for the MS2-VP5' protein or those containing proteins from the host E. coli strain, had hemagglutinating activity. This hemagglutination was inhibited by sera to SA114fM rotavirus. In addition, a single dose of the MS2-VP8' polypeptide was able to prime the immune system of mice for an augmented neutralizing antibody response when the animals were subsequently immunized with purified SA114fM virus.  相似文献   

16.
We describe the characterization of the herpes simplex virus type 2 (HSV-2) gene encoding infected cell protein 32 (ICP32) and virion protein 19c (VP19c). We also demonstrate that the HSV-1 UL38/ORF.553 open reading frame (ORF), which has been shown to specify a viral protein essential for capsid formation (B. Pertuiset, M. Boccara, J. Cebrian, N. Berthelot, S. Chousterman, F. Puvian-Dutilleul, J. Sisman, and P. Sheldrick, J. Virol. 63: 2169-2179, 1989), must encode the cognate HSV type 1 (HSV-1) ICP32/VP19c protein. The region of the HSV-2 genome deduced to contain the gene specifying ICP32/VP19c was isolated and subcloned, and the nucleotide sequence of 2,158 base pairs of HSV-2 DNA mapping immediately upstream of the gene encoding the large subunit of the viral ribonucleotide reductase was determined. This region of the HSV-2 genome contains a large ORF capable of encoding two related 50,538- and 49,472-molecular-weight polypeptides. Direct evidence that this ORF encodes HSV-2 ICP32/VP19c was provided by immunoblotting experiments that utilized antisera directed against synthetic oligopeptides corresponding to internal portions of the predicted polypeptides encoded by the HSV-2 ORF or antisera directed against a TrpE/HSV-2 ORF fusion protein. The type-common immunoreactivity of the two antisera and comparison of the primary amino acid sequences of the predicted products of the HSV-2 ORF and the equivalent genomic region of HSV-1 provided evidence that the HSV-1 UL38 ORF encodes the HSV-1 ICP32/VP19c. Analysis of the expression of the HSV-1 and HSV-2 ICP32/VP19c cognate proteins indicated that there may be differences in their modes of synthesis. Comparison of the predicted structure of the HSV-2 ICP32/VP19c protein with the structures of related proteins encoded by other herpes viruses suggested that the internal capsid architecture of the herpes family of viruses varies substantially.  相似文献   

17.
Virions of polyomaviruses consist of the major structural protein VP1, the minor structural proteins VP2 and VP3, and the viral genome associated with histones. An additional structural protein, VP4, is present in avian polyomavirus (APV) particles. As it had been reported that expression of APV VP1 in insect cells did not result in the formation of virus-like particles (VLP), the prerequisites for particle formation were analyzed. To this end, recombinant influenza viruses were created to (co)express the structural proteins of APV in chicken embryo cells, permissive for APV replication. VP1 expressed individually or coexpressed with VP4 did not result in VLP formation; both proteins (co)localized in the cytoplasm. Transport of VP1, or the VP1-VP4 complex, into the nucleus was facilitated by the coexpression of VP3 and resulted in the formation of VLP. Accordingly, a mutant APV VP1 carrying the N-terminal nuclear localization signal of simian virus 40 VP1 was transported to the nucleus and assembled into VLP. These results support a model of APV capsid assembly in which complexes of the structural proteins VP1, VP3 (or VP2), and VP4, formed within the cytoplasm, are transported to the nucleus using the nuclear localization signal of VP3 (or VP2); there, capsid formation is induced by the nuclear environment.  相似文献   

18.
The cDNA fragment of the large RNA segment of infectious bursal disease virus 002-73, when expressed in Escherichia coli, produces precursor polyprotein (N-VP2-VP4-VP3-C), most of which is then processed to generate constituent polypeptides. Using cDNA fragments containing site-specific mutations and two monoclonal antibodies that are specific to VP2 and VP3 of mature virus particles, we demonstrated that the VP4 protein is involved in processing of the precursor polyprotein to generate VP2 and VP3 and excluded the possibility of internal initiation for the generation of VP3.  相似文献   

19.
Herpes simplex virus type 1 (HSV-1) capsids have an icosahedral structure with capsomers formed by the major capsid protein, VP5, linked in groups of three by distinctive structures called triplexes. Triplexes are heterotrimers formed by two proteins in a 1:2 stoichiometry. The single-copy protein is called VP19C, and the dimeric protein is VP23. We have carried out insertional and deletional mutagenesis on VP19C and have examined the effects of the mutations on virus growth and capsid assembly. Insertional mutagenesis showed that the N-terminal approximately 100 amino acids of the protein, which correspond to a region that is poorly conserved among herpesviruses, are insensitive to disruption and that insertions into the rest of the protein had various effects on virus growth. Some, but not all, severely disabled mutants were compromised in the ability to bind VP23 or VP5. Analysis of deletion mutants revealed the presence of a nuclear localization signal (NLS) near the N terminus of VP19C, and this was mapped to a 33-amino-acid region by fusion of specific sequences to a green fluorescent protein marker. By replacing the endogenous NLS with that from the simian virus 40 large T antigen, we were able to show that the first 45 amino acids of VP19C were not essential for assembly of functional capsids and infectious virus particles. However, removing the first 63 amino acids resulted in formation of aberrant capsids and prevented virus growth, suggesting that the poorly conserved N-terminal sequences have some as-yet-unidentified function.  相似文献   

20.
The structures of infectious human parvovirus B19 and empty wild-type particles were determined by cryoelectron microscopy (cryoEM) to 7.5-Å and 11.3-Å resolution, respectively, assuming icosahedral symmetry. Both of these, DNA filled and empty, wild-type particles contain a few copies of the minor capsid protein VP1. Comparison of wild-type B19 with the crystal structure and cryoEM reconstruction of recombinant B19 particles consisting of only the major capsid protein VP2 showed structural differences in the vicinity of the icosahedral fivefold axes. Although the unique N-terminal region of VP1 could not be visualized in the icosahedrally averaged maps, the N terminus of VP2 was shown to be exposed on the viral surface adjacent to the fivefold β-cylinder. The conserved glycine-rich region is positioned between two neighboring, fivefold-symmetrically related VP subunits and not in the fivefold channel as observed for other parvoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号