首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane-associated 3,5-dichlorophenol reductive dehalogenase was isolated from Desulfitobacterium frappieri PCP-1. The highest dehalogenase activity was observed with the biomass cultured at 22°C, compared to 30 and 37°C, where the cell suspensions were 2.2 and 9.6 times less active, respectively. The reductive dehalogenase was purified 12.7-fold to apparent homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 57 kDa. Its dechlorinating activity was not inhibited by sulfate and nitrate but was completely inhibited by 2.5 mM sulfite and 10 mM KCN. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activities, suggesting the involvement of a corrinoid cofactor. Several polychlorophenols were dechlorinated at the meta and para positions. The apparent Km for 3,5-dicholorophenol was 49.3 ± 3.1 μM at a methyl viologen concentration of 2 mM. Six internal tryptic peptides were sequenced by mass spectrometry. One open reading frame (ORF) was found in the Desulfitobacterium hafniense genome containing these peptide sequences. This ORF corresponds to a gene coding for a CprA-type reductive dehalogenase. The corresponding ORF (named cprA5) in D. frappieri PCP-1 was cloned and sequenced. The cprA5 gene codes for a 548-amino-acid protein that contains a twin-arginine-type signal for secretion. The gene product has a cobalamin binding site motif and two iron-sulfur binding motifs and shows 66% identity (76 to 77% similarity) with some tetrachloroethene reductive dehalogenases. This is the first CprA-type reductive dehalogenase that can dechlorinate chlorophenols at the meta and para positions.  相似文献   

2.
3.
4.
The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 +/- 1 kDa, whereas the native molecular mass was 71 +/- 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-beta-D-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 +/- 0.1 mol of cobalamin, 0.6 +/- 0.02 mol of cobalt, 7.1 +/- 0.6 mol of iron, and 5.8 +/- 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 +/- 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The K(m) values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 +/- 3.2, 23.7 +/- 5.2, and 47 +/- 10 micro M, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy.  相似文献   

5.
Desulfitobacterium frappieri PCP-1 has the capacity to dehalogenate several halogenated aromatic compounds by reductive dehalogenation, however, the genes encoding the enzymes involved in such processes have not yet been identified. Using a degenerate oligonucleotide corresponding to a conserved sequence of CprA/PceA reductive dehalogenases, a cprA-like gene fragment was amplified by PCR from this bacterial strain. A Desulfitobacterium frappieri PCP-1 cosmid library was screened with the PCR product, allowing the cloning and sequencing of a 1.9-kb fragment. This fragment contains a nucleic acid sequence identical to one genomic contig of Desulfitobacterium hafniense, a bacterium closely related to Desulfitobacterium frappieri that is also involved in reductive dehalogenation. Other genes related to the Desulfitobacterium dehalogenans cpr locus were identified in this contig. Interestingly, the gene arrangement shows the presence of two copies of cprA-, cprB-, cprC-, cprD-, cprK-, and cprT-related genes, suggesting that gene duplication occurred within this chromosomic region. The screening of Delfitobacterium hafniense genomic contigs with a CprA-deduced amino acid sequence revealed two other cprA-like genes. Microbial genomes available in gene databases were also analyzed for sequences related to CprA/PceA. Two open reading frames encoding other putative reductive dehalogenases in Desulfitobacterium hafniense contigs were detected, along with 17 in the Dehalococcoides ethenogenes genome, a bacterium involved in the reductive dehalogenation of tetrachloroethene to ethene. The fact that several gene encoding putative reductive dehalogenases exist in Delfitobacterium hafniense, probably in other members of the genus Desulfitobacterium, and in Dehalococcoides ethenogenes suggests that these bacteria use distinct but related enzymes to achieve the dehalogenation of several chlorinated compounds [corrected].  相似文献   

6.
ortho-Chlorophenol reductive dehalogenase of the halorespiring Gram-positive Desulfitobacterium dehalogenans was purified 90-fold to apparent homogeneity. The purified dehalogenase catalyzed the reductive removal of a halogen atom from the ortho position of 3-chloro-4-hydroxyphenylacetate, 2-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, pentachlorophenol, and 2-bromo-4-chlorophenol with reduced methyl viologen as electron donor. The dechlorination of 3-chloro-4-hydroxyphenylacetate was catalyzed by the enzyme at a Vmax of 28 units/mg protein and a Km of 20 microM. The pH and temperature optimum were 8.2 and 52 degrees C, respectively. EPR analysis indicated one [4Fe-4S] cluster (midpoint redox potential (Em) = -440 mV), one [3Fe-4S] cluster (Em = +70 mV), and one cobalamin per 48-kDa monomer. The Co(I)/Co(II) transition had an Em of -370 mV. Via a reversed genetic approach based on the N-terminal sequence, the corresponding gene was isolated from a D. dehalogenans genomic library, cloned, and sequenced. This revealed the presence of two closely linked genes: (i) cprA, encoding the o-chlorophenol reductive dehalogenase, which contains a twin-arginine type signal sequence that is processed in the purified enzyme; (ii) cprB, coding for an integral membrane protein that could act as a membrane anchor of the dehalogenase. This first biochemical and molecular characterization of a chlorophenol reductive dehalogenase has revealed structural resemblance with haloalkene reductive dehalogenases.  相似文献   

7.
Gene sequence alignments of the reductive dehalogenases PceA (Dehalospirillum multivorans) and CprA (Desulfitobacterium dehalogenans) were used to develop specific PCR primers binding to conserved regions of these sequences. These primers enabled us to amplify and subsequently sequence cprA-like gene fragments from the chlororespiring species Dehalobacter restrictus, Desulfitobacterium sp. strain PCE1, and D. hafniense. No specific amplicons were obtained from the chlororespiring species D. frappieri, D. chlororespirans, and Desulfomonile tiedjei. Furthermore, we were able to amplify and sequence cprA/pceA-like gene fragments from both trichlorobenzene (TCB)- and 1,2-dichloropropane (DCP)-dechlorinating microbial consortia using the novel primers. Subsequent sequence analysis of the fragments obtained from the microbial consortia revealed a group of four clusters (I-IV). Of these, clusters I and II showed the highest similarities to the cprA-like gene of Dehalobacter restrictus (79.0 and 96.2%, respectively). Cluster III comprised cprA-like sequences found in both the TCB- and the DCP-dechlorinating consortia, whereas sequences of cluster IV were most similar to the pceA gene of Dehalospirillum multivorans (97.8%). Our detection of genes encoding reductive dehalogenases, the key enzymes of chlororespiration, supports the hypothesis that reductive dechlorination of TCB and DCP occurs via a respiratory pathway.  相似文献   

8.
Dissimilatory arsenate-reducing bacteria have been implicated in the mobilization of arsenic from arsenic-enriched sediments. An As(V)-reducing bacterium, designated strain GBFH, was isolated from arsenic-contaminated sediments of Lake Coeur d'Alene, Idaho. Strain GBFH couples the oxidation of formate to the reduction of As(V) when formate is supplied as the sole carbon source and electron donor. Additionally, strain GBFH is capable of reducing As(V), Fe(III), Se(VI), Mn(IV) and a variety of oxidized sulfur species. 16S ribosomal DNA sequence comparisons reveal that strain GBFH is closely related to Desulfitobacterium hafniense DCB-2(T) and Desulfitobacterium frappieri PCP-1(T). Comparative physiology demonstrates that D. hafniense and D. frappieri, known for reductively dechlorinating chlorophenols, are also capable of toxic metal or metalloid respiration. DNA-DNA hybridization and comparative physiological studies suggest that D. hafniense, D. frappieri, and strain GBFH should be united into one species. The isolation of an Fe(III)- and As(V)-reducing bacterium from Lake Coeur d'Alene suggests a mechanism for arsenic mobilization in these contaminated sediments while the discovery of metal or metalloid respiration in the genus Desulfitobacterium has implications for environments cocontaminated with arsenious and chlorophenolic compounds.  相似文献   

9.
Desulfitobacterium strain PCE1 is able to use tetrachloroethene and chloroaromatics as terminal electron acceptors for growth. Cell extracts of Desulfitobacterium strain PCE1 grown with tetrachloroethene as electron acceptor showed no dehalogenase activity with 3-chloro-4-hydroxyphenylacetate (Cl-OH-phenylacetate) and other ortho-chlorophenolic compounds in an in vitro assay. Extracts of cells that were grown with Cl-OH-phenylacetate as electron acceptor dechlorinated tetrachloroethene at 10% of the dechlorination rate of Cl-OH-phenylacetate. In both cell extracts dechlorination was inhibited by the addition of 1-iodopropane and dinitrogen oxide, inhibitors of cobalamin-containing enzymes. The enzymes responsible for tetrachloroethene and Cl-OH-phenylacetate dechlorination were partially purified. A 100-fold enriched fraction of chlorophenol reductive dehalogenase was obtained that mainly contained a protein with a subunit size of 48 kDa. The characteristics of this enzyme are similar to that of the chlorophenol reductive dehalogenase of D. dehalogenans. After partial purification of the tetrachloroethene reductive dehalogenase, a fraction was obtained that also contained a 48-kDa protein, but the N-terminal sequence showed no similarity with that of the chlorophenol reductive dehalogenase sequence or with the N-terminal amino acid sequence of tetra- and trichloroethene reductive dehalogenase of Desulfitobacterium strain TCE1. These results provide strong evidence that two different enzymes are responsible for tetrachloroethene and chlorophenol dechlorination in Desulfitobacterium strain PCE1. Furthermore, the characterization of partially purified tetrachloroethene reductive dehalogenase indicated that this enzyme is a novel type of reductive dehalogenase.  相似文献   

10.
A strict anaerobic bacterium, Desulfitobacterium sp. strain Y51, is capable of very efficiently dechlorinating tetrachloroethene (PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (cis-DCE) at concentrations as high as 960 microM and as low as 0.06 microM. Dechlorination was highly susceptible to air oxidation and to potential alternative electron acceptors, such as nitrite, nitrate or sulfite. The PCE reductive dehalogenase (encoded by the pceA gene and abbreviated as PceA dehalogenase) of strain Y51 was purified and characterized. The purified enzyme catalyzed the reductive dechlorination of PCE to cis-DCE at a specific activity of 113.6 nmol min(-1) mg protein(-1). The apparent K(m) values for PCE and TCE were 105.7 and 535.3 microM, respectively. In addition to PCE and TCE, the enzyme exhibited dechlorination activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane and 1,1,2,2-tetrachloroethane. An 8.4-kb DNA fragment cloned from the Y51 genome revealed eight open reading frames, including the pceAB genes. Immunoblot analysis revealed that PceA dehalogenase is localized in the periplasm of Y51 cells. Production of PceA dehalogenase was induced upon addition of TCE. Significant growth inhibition of strain Y51 was observed in the presence of cis-DCE, More interestingly, the pce gene cluster was deleted with high frequency when the cells were grown with cis-DCE.  相似文献   

11.
A mixed culture dechlorinating 1,2-dichloroethane (1,2-DCA) to ethene was enriched from groundwater that had been subjected to long-term contamination. In the metagenome of the enrichment, a 7-kb reductive dehalogenase (RD) gene cluster sequence was detected by inverse and direct PCR. The RD gene cluster had four open reading frames (ORF) showing 99% nucleotide identity with pceB, pceC, pceT, and orf1 of Dehalobacter restrictus strain DSMZ 9455(T), a bacterium able to dechlorinate chlorinated ethenes. However, dcaA, the ORF encoding the catalytic subunit, showed only 94% nucleotide and 90% amino acid identity with pceA of strain DSMZ 9455(T). Fifty-three percent of the amino acid differences were localized in two defined regions of the predicted protein. Exposure of the culture to 1,2-DCA and lactate increased the dcaA gene copy number by 2 log units, and under these conditions the dcaA and dcaB genes were actively transcribed. A very similar RD gene cluster with 98% identity in the dcaA gene sequence was identified in Desulfitobacterium dichloroeliminans strain DCA1, the only known isolate that selectively dechlorinates 1,2-DCA but not chlorinated ethenes. The dcaA gene of strain DCA1 possesses the same amino acid motifs as the new dcaA gene. Southern hybridization using total genomic DNA of strain DCA1 with dcaA gene-specific and dcaB- and pceB-targeting probes indicated the presence of two identical or highly similar dehalogenase gene clusters. In conclusion, these data suggest that the newly described RDs are specifically adapted to 1,2-DCA dechlorination.  相似文献   

12.
Desulfitobacterium hafniense strain PCP-1 reductively dechlorinates pentachlorophenol (PCP) to 3-chlorophenol and a variety of halogenated aromatic compounds at the ortho, meta, and para positions. Several reductive dehalogenases (RDases) are thought to be involved in this cascade of dehalogenation. We partially purified a novel RDase involved in the dechlorination of highly chlorinated phenols from strain PCP-1 cultivated in the presence of 2,4,6-trichlorophenol. The RDase was membrane associated, and the activity was sensitive to oxygen, with a half-life of 128 min upon exposure to air. The pH and temperature optima were 7.0 and 55°C, respectively. Several highly chlorinated phenols were dechlorinated at the ortho positions. The highest dechlorinating activity levels were observed with PCP, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol. 3-Chloro-4-hydroxyphenylacetate, 3-chloro-4-hydroxybenzoate, dichlorophenols, and monochlorophenols were not dechlorinated. The apparent Km value for PCP was 46.7 μM at a methyl viologen concentration of 2 mM. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activity, suggesting the involvement of a corrinoid cofactor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation revealed 2 bands with apparent molecular masses of 42 and 47 kDa. Mass spectrometry analysis using Mascot to search the genome sequence of D. hafniense strain DCB-2 identified the 42-kDa band as NADH-quinone oxidoreductase, subunit D, and the 47-kDa band as the putative chlorophenol RDase CprA3. This is the first report of an RDase with high affinity and high dechlorinating activity toward PCP.Halogenated compounds are generally known as toxic environmental pollutants. Hydrogenolytic reductive dehalogenation, a reaction involving the replacement of one halogen atom with one hydrogen atom, is the predominant mechanism for their transformation in anaerobic environments. This process can sustain microbial growth via electron transport-coupled phosphorylation (10, 26, 31). The majority of the known reductive dehalogenases (RDases) belong to the CprA/PceA family. These are single-polypeptide membrane-associated anaerobic enzymes that are synthesized as preproteins with a cleavable twin arginine translocation (TAT) peptide signal. They contain one corrinoid and two iron-sulfur clusters as cofactors.CprA enzymes catalyzing the reductive dechlorination of chloroaromatics have been purified from Desulfitobacterium hafniense strain DCB-2 (6), Desulfitobacterium dehalogenans (30), Desulfitobacterium chlororespirans strain Co23 (12, 14), Desulfitobacterium sp. strain PCE1 (29), and D. hafniense strain PCP-1 (28) and characterized, and PceA enzymes have been purified from Sulfurospirillum multivorans (22, 23), Desulfitobacterium sp. strain PCE-S (18, 19), D. hafniense strain TCE1 (29), Dehalococcoides ethenogenes 195 (15, 16), Desulfitobacterium sp. strain PCE1 (29), Dehalobacter restrictus (17, 25), Desulfitobacterium sp. strain Y51 (27), and Dehalococcoides sp. strain VS (20) and characterized. However, none of these enzymes showed high dechlorinating activity toward highly chlorinated phenols such as pentachlorophenol (PCP).D. hafniense strain PCP-1 is the only known strict anaerobic bacterium which reductively dechlorinates PCP to 3-chlorophenol (3-CP) and a variety of halogenated aromatic compounds at the ortho, meta, and para positions (2, 7). It dechlorinates PCP at the ortho, ortho, para, and meta positions in the following order: PCP → 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP) → 3,4,5-trichlorophenol (3,4,5-TCP) → 3,5-dichlorophenol (3,5-DCP) → 3-CP (7). Several RDases are thought to operate during this sequence of dechlorinations. Two RDases have already been purified from strain PCP-1. The first one, CrdA, is a membrane-associated enzyme, not related to CprA/PceA-type RDases, that mediates ortho dechlorination of 2,4,6-TCP and several chlorophenols (3). The second enzyme, CprA5, catalyzes the meta and para dechlorination of 3,5-DCP and several chlorophenols (28). Three other putative cprA genes were identified in strain PCP-1 (cprA2, cprA3, and cprA4), which suggests that other RDases with different specificities toward halogenated compounds exist in this strain (8, 31, 32). In this study, we have partially purified and characterized a new CprA-type RDase (CprA3) from strain PCP-1. CprA3 is the first reported RDase with high affinity toward PCP and with high ortho-dechlorinating activity toward PCP and other highly chlorinated phenols.  相似文献   

13.
14.
The tetrachloroethene (PCE) reductive dehalogenase (encoded by the pceA gene and designated PceA dehalogenase) of Desulfitobacterium sp. strain Y51 was purified and characterized. The expression of the enzyme was highly induced in the presence of PCE and trichloroethene (TCE). The purified enzyme catalyzed the reductive dehalogenation of PCE via TCE to cis-1,2-dichloroethene at a specific activity of 113.6 nmol x min(-1) x mg of protein(-1). The apparent K(m) values for PCE and TCE were 105.7 and 535.3 microM, respectively. Chlorinated ethenes other than PCE and TCE were not dehalogenated. However, the enzyme exhibited dehalogenation activity for various chlorinated ethanes such as hexachloroethane, pentachloroethane, 1,1,1,2-tetrachloroethane, and 1,1,2,2-tetrachloroethane. The pceA gene of Desulfitobacterium sp. strain Y51 was identified in a 2.8-kb DNA fragment and used to express the protein in Escherichia coli for the preparation of antibodies. Immunoblot analyses located PceA in the periplasm of the cell.  相似文献   

15.
Anaerobic biodegradation of pentachlorophenol (PCP) was studied in rotative bioreactors containing 200 g of PCP-contaminated soil and 250 ml of liquid medium. Reactors were bioaugmented with cells of Desulfitobacterium frappieri strain PCP-1, a bacterium able to dehalogenate PCP to 3-chlorophenol. Cells of strain PCP-1 were detected by quantitative PCR for at least 21 days in reactors containing 500 mg of PCP per kg of soil but disappeared after 21 days in reactors with 750 mg of PCP per kg of soil. Generally, PCP was completely removed in less than 9 days in soils contaminated with 189 mg of PCP per kg of soil. Sorption of PCP to soil organic matter reduced its toxicity and enhanced the survival of strain PCP-1. In some non-inoculated reactors, the indigenous microorganisms of some soils were also able to degrade PCP. These results suggest that anaerobic dechlorination of PCP in soils by indigenous PCP-degrading bacteria, or after augmentation with D. frappieri PCP-1, should be possible in situ and ex situ when the conditions are favourable for the survival of the degrading microorganisms.  相似文献   

16.
Strain TCE1, a strictly anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene (PCE) and trichloroethene (TCE), was isolated by selective enrichment from a PCE-dechlorinating chemostat mixed culture. Strain TCE1 is a gram-positive, motile, curved rod-shaped organism that is 2 to 4 by 0.6 to 0.8 microm and has approximately six lateral flagella. The pH and temperature optima for growth are 7.2 and 35 degrees C, respectively. On the basis of a comparative 16S rRNA sequence analysis, this bacterium was identified as a new strain of Desulfitobacterium frappieri, because it exhibited 99.7% relatedness to the D. frappieri type strain, strain PCP-1. Growth with H(2), formate, L-lactate, butyrate, crotonate, or ethanol as the electron donor depends on the availability of an external electron acceptor. Pyruvate and serine can also be used fermentatively. Electron donors (except formate and H(2)) are oxidized to acetate and CO(2). When L-lactate is the growth substrate, strain TCE1 can use the following electron acceptors: PCE and TCE (to produce cis-1,2-dichloroethene), sulfite and thiosulfate (to produce sulfide), nitrate (to produce nitrite), and fumarate (to produce succinate). Strain TCE1 is not able to reductively dechlorinate 3-chloro-4-hydroxyphenylacetate. The growth yields of the newly isolated bacterium when PCE is the electron acceptor are similar to those obtained for other dehalorespiring anaerobes (e.g., Desulfitobacterium sp. strain PCE1 and Desulfitobacterium hafniense) and the maximum specific reductive dechlorination rates are 4 to 16 times higher (up to 1.4 micromol of chloride released. min(-1). mg of protein(-1)). Dechlorination of PCE and TCE is an inducible process. In PCE-limited chemostat cultures of strain TCE1, dechlorination is strongly inhibited by sulfite but not by other alternative electron acceptors, such as fumarate or nitrate.  相似文献   

17.
In this work, a strain of anaerobic pentachlorophenol (PCP) degrader, Desulfitobacterium frappieri PCP-1, was used to augment a mixed bacterial community of an anaerobic upflow sludge bed reactor degrading PCP. To estimate the efficiency of augmentation, the population of PCP-1 in the reactor was enumerated by a competitive PCR technique. The PCP-1 strain appeared to compete well with other microorganisms of the mixed bacterial community, with its population increasing from 10(6) to 10(10) cells/g of volatile suspended solids within a period of 70 days. Proliferation of strain PCP-1 allowed for a substantial increase of the volumetric PCP load from 5 to 80 mg/liter of reaction volume/day. A PCP removal efficiency of 99% and a dechlorination efficiency of not less than 90.5% were observed throughout the experiment, with 3-Cl-phenol and phenol being observable dechlorination intermediates.  相似文献   

18.
Oligonucleotide probes were used to study the structure of anaerobic granular biofilm originating from a pentachlorophenol-fed upflow anaerobic sludge bed reactor augmented with Desulfitobacterium frappieri PCP-1. Fluorescence in situ hybridization demonstrated successful colonization of anaerobic granules by strain PCP-1. Scattered microcolonies of strain PCP-1 were detected on the biofilm surface after 3 weeks of reactor operation, and a dense outer layer of strain PCP-1 was observed after 9 weeks. Hybridization with probes specific for Eubacteria and Archaea probes showed that Eubacteria predominantly colonized the outer layer, while Archaea were observed in the granule interior. Mathematical simulations showed a distribution similar to that observed experimentally when using a specific growth rate of 2.2 day(-1) and a low bacterial diffusion of 10(-7) dm(2) day(-1). Also, the simulations showed that strain PCP-1 proliferation in the outer biofilm layer provided excellent protection of the biofilm from pentachlorophenol toxicity.  相似文献   

19.
A mixed culture dechlorinating 1,2-dichloroethane (1,2-DCA) to ethene was enriched from groundwater that had been subjected to long-term contamination. In the metagenome of the enrichment, a 7-kb reductive dehalogenase (RD) gene cluster sequence was detected by inverse and direct PCR. The RD gene cluster had four open reading frames (ORF) showing 99% nucleotide identity with pceB, pceC, pceT, and orf1 of Dehalobacter restrictus strain DSMZ 9455T, a bacterium able to dechlorinate chlorinated ethenes. However, dcaA, the ORF encoding the catalytic subunit, showed only 94% nucleotide and 90% amino acid identity with pceA of strain DSMZ 9455T. Fifty-three percent of the amino acid differences were localized in two defined regions of the predicted protein. Exposure of the culture to 1,2-DCA and lactate increased the dcaA gene copy number by 2 log units, and under these conditions the dcaA and dcaB genes were actively transcribed. A very similar RD gene cluster with 98% identity in the dcaA gene sequence was identified in Desulfitobacterium dichloroeliminans strain DCA1, the only known isolate that selectively dechlorinates 1,2-DCA but not chlorinated ethenes. The dcaA gene of strain DCA1 possesses the same amino acid motifs as the new dcaA gene. Southern hybridization using total genomic DNA of strain DCA1 with dcaA gene-specific and dcaB- and pceB-targeting probes indicated the presence of two identical or highly similar dehalogenase gene clusters. In conclusion, these data suggest that the newly described RDs are specifically adapted to 1,2-DCA dechlorination.  相似文献   

20.
The United Nations and the U.S. Environmental Protection Agency have identified a variety of chlorinated aromatics that constitute a significant health and environmental risk as "priority organic pollutants," the so-called "dirty dozen." Microbes have evolved the ability to utilize chlorinated aromatics as terminal electron acceptors in an energy-generating process called dehalorespiration. In this process, a reductive dehalogenase (CprA), couples the oxidation of an electron donor to the reductive elimination of chloride. We have characterized the B12 and iron-sulfur cluster-containing 3-chloro-4-hydroxybenzoate reductive dehalogenase from Desulfitobacterium chlororespirans. By defining the substrate and inhibitor specificity for the dehalogenase, the enzyme was found to require an hydroxyl group ortho to the halide. Inhibition studies indicate that the hydroxyl group is required for substrate binding. The carboxyl group can be replaced by other functionalities, e.g. acetyl or halide groups, ortho or meta to the chloride to be eliminated. The purified D. chlororespirans enzyme could dechlorinate an hydroxylated PCB (3,3',5,5'-tetrachloro-4,4'-biphenyldiol) at a rate about 1% of that with 3-chloro-4-hydroxybenzoate. Solvent deuterium isotope effect studies indicate that transfer of a single proton is partially rate-limiting in the dehalogenation reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号