首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The one or more coupling mechanisms of store-operated channels (SOCs) to endoplasmic reticulum (ER) Ca2+ store depletion as well as the molecular identity of SOCs per se still remain a mystery. Here, we demonstrate the co-existence of two populations of molecular distinct endogenous SOCs in LNCaP prostate cancer epithelial cells, which are preferentially activated by either active inositol 1,4,5-trisphosphate (IP3)-mediated or passive thapsigargin-facilitated store depletion and have different ER store content sensitivity. The first population, called SOC(CC) (for "conformational coupling"), is characterized by preferential IP3 receptor-dependent mode of activation, as judged from sensitivity to cytoskeleton modifications, and dominant contribution of transient receptor potential (TRP) TRPC1 within it. The second one, called SOC(CIF) (for "calcium influx factor"), depends on Ca(2+)-independent phospholipase A2 for activation with probable CIF involvement and is mostly represented by TRPC4. The previously identified SOC constituent in LNCaP cells, TRPV6, seems to play equal role in both SOC populations. These results provide new insight into the nature of SOCs and their representation in the single cell type as well as permit reconciliation of current SOC activation hypotheses.  相似文献   

2.
3.
The mechanism for coupling between Ca(2+) stores and store-operated channels (SOCs) is an important but unresolved question. Although SOCs have not been molecularly identified, transient receptor potential (TRP) channels share a number of operational parameters with SOCs. The question of whether activation of SOCs and TRP channels is mediated by the inositol 1,4,5-trisphosphate receptor (InsP(3)R) was examined using the permeant InsP(3)R antagonist, 2-aminoethoxydiphenyl borate (2-APB) in both mammalian and invertebrate systems. In HEK293 cells stably transfected with human TRPC3 channels, the actions of 2-APB to block carbachol-induced InsP(3)R-mediated store release and carbachol-induced Sr(2+) entry through TRPC3 channels were both reversed at high agonist levels, suggesting InsP(3)Rs mediate TRPC3 activation. However, electroretinogram recordings of the light-induced current in Drosophila revealed that the TRP channel-mediated responses in wild-type as well as trp and trpl mutant flies were all inhibited by 2-APB. This action of 2-APB is likely InsP(3)R-independent since InsP(3)Rs are dispensable for the light response. We used triple InsP(3)R knockout DT40 chicken B-cells to further assess the role of InsP(3)Rs in SOC activation. (45)Ca(2+) flux analysis revealed that although DT40 wild-type cells retained normal InsP(3)Rs mediating 2-APB-sensitive Ca(2+) release, the DT40InsP(3)R-k/o cells were devoid of functional InsP(3)Rs. Using intact cells, all parameters of Ca(2+) store function and SOC activation were identical in DT40wt and DT40InsP(3)R-k/o cells. Moreover, in both cell lines SOC activation was completely blocked by 2-APB, and the kinetics of action of 2-APB on SOCs (time dependence and IC(50)) were identical. The results indicate that (a) the action of 2-APB on Ca(2+) entry is not mediated by the InsP(3)R and (b) the effects of 2-APB provide evidence for an important similarity in the function of invertebrate TRP channels, mammalian TRP channels, and mammalian store-operated channels.  相似文献   

4.
A series of arylglycine-based analogs was synthesized and tested for TRPM8 antagonism in a cell-based functional assay. Following structure–activity relationship studies in vitro, a number of compounds were identified as potent TRPM8 antagonists and were subsequently evaluated in an in vivo pharmacodynamic assay of icilin-induced ‘wet-dog’ shaking in which compound 12 was fully effective. TRPM8 antagonists of the type described here may be useful in treating pain conditions wherein cold hypersensitivity is a dominant feature.  相似文献   

5.
ABSTRACT: BACKGROUND: Transient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a 'cold temperature sensor' in vivo. Although it is known that agonists of this 'cold temperature sensor', such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation. RESULTS: We characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98degreesC). Since thermoregulation is a homeostatic process that maintains Tb about 37degreesC, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards. CONCLUSIONS: The data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8's role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.  相似文献   

6.
Transient receptor potential vanilloid (TRPV) channels respond to polymodal stresses to induce pain, inflammation and tissue fibrosis. In this study, we probed for their functional expression in human conjunctival epithelial (HCjE) cells and ex vivo human conjunctivas. Notably, patients suffering from dry eye syndrome experience the same type of symptomology induced by TRPV channel activation in other ocular tissues. TRPV gene and protein expression were determined by RT-PCR and immunohistochemistry in HCjE cells and human conjunctivas (body donors). The planar patch-clamp technique was used to record nonselective cation channel currents. Ca(2+) transients were monitored in fura-2 loaded cells. Cultivated HCjE cells and human conjunctiva express TRPV1, TRPV2, and TRPV4 mRNA. TRPV1 and TRPV4 localization was identified in human conjunctiva. Whereas the TRPV1 agonist capsaicin (CAP) (5-20 μM) -induced Ca(2+) transients were blocked by capsazepine (CPZ) (10 μM), the TRPV4 activator 4α-PDD (10 μM) -induced Ca(2+) increases were reduced by ruthenium-red (RuR) (20 μM). Different heating (<40°C or >43°C) led to Ca(2+) increases, which were also reduced by RuR. Hypotonic challenges of either 25 or 50% induced Ca(2+) transients and nonselective cation channel currents. In conclusion, conjunctiva express TRPV1, TRPV2, and TRPV4 channels which may provide novel drug targets for dry eye therapeutics. Their usage may have fewer side effects than those currently encountered with less selective drugs.  相似文献   

7.
Large-conductance Ca2+-dependent K+ (BK(Ca)) channels are activated by intracellular Ca2+ and membrane depolarization in an allosteric manner. We investigated the pharmacological and biophysical characteristics of a BK(Ca)-type K+ channel in androgen-dependent LNCaP (lymph node carcinoma of the prostate) cells with novel functional properties, here termed BK(L). K+ selectivity, high conductance, activation by Mg2+ or NS1619, and inhibition by paxilline and penitrem A largely resembled the properties of recombinant BK(Ca) channels. However, unlike conventional BK(Ca) channels, BK(L) channels activated in the absence of free cytosolic Ca2+ at physiological membrane potentials; the half-maximal activation voltage was shifted by about -100 mV compared with BK(Ca) channels. Half-maximal Ca2+-dependent activation was observed at 0.4 microM: for BK(L) (at -20 mV) and at 4.1 microM: for BK(Ca) channels (at +50 mV). Heterologous expression of hSlo1 in LNCaP cells increased the BK(L) conductance. Expression of hSlo-beta1 in LNCaP cells shifted voltage-dependent activation to values between that of BK(L) and BK(Ca) channels and reduced the slope of the P (open) (open probability)-voltage curve. We propose that LNCaP cells harbor a so far unknown type of BK(Ca) subunit, which is responsible for the BK(L) phenotype in a dominant manner. BK(L)-like channels are also expressed in the human breast cancer cell line T47D. In addition, functional expression of BK(L) in LNCaP cells is regulated by serum-derived factors, however not by androgens.  相似文献   

8.
9.
10.
The transient receptor potential channel of melastatin type 8 (TRPM8), which is gated by low (<25 degrees C) temperature and chemical compounds, is regulated by protein kinase C-mediated phosphorylation in a way opposite to that observed with the transient receptor potential channel of vanilloid type 1 (TRPV1), i.e. by being desensitized and not sensitized. As TRPV1 is sensitized also by protein kinase A (PKA)-mediated phosphorylation, we investigated the effect of two activators of the PKA pathway, 8-Br-cAMP and forskolin, on the activity of menthol and icilin at TRPM8 in HEK-293 cells stably overexpressing the channel (TRPM8-HEK-293 cells). We also studied the effect on TRPM8 of: (1) a series of compounds previously shown to activate or antagonize TRPV1, and (2) co-stimulation of transiently co-expressed cannabinoid CB(1) receptors. Both 8-Br-cAMP (100 microM) and forskolin (10 microM) right-shifted the dose-response curves for the TRPM8-mediated effect of icilin and menthol on intracellular Ca(2+). The inhibitory effects of 8-Br-cAMP and forskolin were attenuated by the selective PKA inhibitor Rp-cAMP-S. Stimulation of human CB(1) receptors transiently co-expressed in TRPM8-HEK-293 cells also inhibited TRPM8 response to icilin. Finally, some TRPV1 agonists and antagonists, but not iodinated antagonists, antagonized icilin- and much less so menthol-, induced TRPM8 activation. Importantly, the endovanilloids/endocannabinoids, anandamide and NADA, also antagonized TRPM8 at submicromolar concentrations. Although these findings need to be confirmed by experiments directly measuring TRPM8 activity in natively TRPM8-expressing cells, they support the notion that the same regulatory events have opposing actions on TRPM8 and TRPV1 receptors and identify anandamide and NADA as the first potential endogenous functional antagonists of TRPM8 channels.  相似文献   

11.
Recognition of temperature is a critical element of sensory perception and allows mammals to evaluate both their external environment and internal status. The respiratory epithelium is constantly exposed to the external environment, and prolonged inhalation of cold air is detrimental to human airways. However, the mechanisms responsible for adverse effects elicited by cold air on the human airways are poorly understood. Transient receptor potential melastatin family member 8 (TRPM8) is a well-established cold- and menthol-sensing cation channel. We recently discovered a functional cold- and menthol-sensing variant of the TRPM8 ion channel in human lung epithelial cells. The present study explores the hypothesis that this TRPM8 variant mediates airway cell inflammatory responses elicited by cold air/temperatures. Here, we show that activation of the TRPM8 variant in human lung epithelial cells leads to increased expression of several cytokine and chemokine genes, including IL-1alpha, -1beta, -4, -6, -8, and -13, granulocyte-macrophage colony-stimulating factor (GM-CSF), and TNF-alpha. Our results provide new insights into mechanisms that potentially control airway inflammation due to inhalation of cold air and suggest a possible role for the TRPM8 variant in the pathophysiology of asthma.  相似文献   

12.
One important mechanism of the regulation of membrane ion channels involves their nonfunctional isoforms generated by alternative splicing. However, knowledge of such isoforms for the members of the transient receptor potential (TRP) superfamily of ion channels remains quite limited. This study focuses on the TRPM8, which functions as a cold receptor in sensory neurons but is also expressed in tissues not exposed to ambient temperatures, as well as in cancer tissues. We report the cloning from prostate cancer cells of new short splice variants of TRPM8, termed short TRPM8α and short TRPM8β. Our results show that both variants are in a closed configuration with the C-terminal tail of the full-length TRPM8 channel, resulting in stabilization of its closed state and thus reducing both its cold sensitivity and activity. Our findings therefore uncover a new mode of regulation of the TRPM8 channel by its splice variants.  相似文献   

13.
A series of benzothiophene-based phosphonates was synthesized and many analogs within the series were shown to be potent antagonists of the TRPM8 channel. The compounds were obtained as a racemic mixture in 5 synthetic steps, and were tested for TRPM8 antagonist activity in a recombinant, canine TRPM8-expressing cell line using a fluorometric imaging plate reader (FLIPR) assay. Structure-activity relationships were developed initially by modification of the core structure and subsequently by variation of the aromatic substituents and the phosphonate ester. Compound 9l was administered intraperitoneally to rats and demonstrated engagement of the TRPM8 target in both prevention and reversal-modes in an icilin-induced 'wet-dog' shake model.  相似文献   

14.
Transient receptor potential melastatin 7 (TRPM7) channels represent the major magnesium-uptake mechanism in mammalian cells and are key regulators of cell growth and proliferation. They are expressed abundantly in a variety of human carcinoma cells controlling survival, growth, and migration. These characteristics are the basis for recent interest in the channel as a target for cancer therapeutics. We screened a chemical library of marine organism-derived extracts and identified waixenicin A from the soft coral Sarcothelia edmondsoni as a strong inhibitor of overexpressed and native TRPM7. Waixenicin A activity was cytosolic and potentiated by intracellular free magnesium (Mg(2+)) concentration. Mutating a Mg(2+) binding site on the TRPM7 kinase domain reduced the potency of the compound, whereas kinase deletion enhanced its efficacy independent of Mg(2+). Waixenicin A failed to inhibit the closely homologous TRPM6 channel and did not significantly affect TRPM2, TRPM4, and Ca(2+) release-activated Ca(2+) current channels. Therefore, waixenicin A represents the first potent and relatively specific inhibitor of TRPM7 ion channels. Consistent with TRPM7 inhibition, the compound blocked cell proliferation in human Jurkat T-cells and rat basophilic leukemia cells. Based on the ability of the compound to inhibit cell proliferation through Mg(2+)-dependent block of TRPM7, waixenicin A, or structural analogs may have cancer-specific therapeutic potential, particularly because certain cancers accumulate cytosolic Mg(2+).  相似文献   

15.
Parathyroid hormone (PTH) directly interacts with bone remodeling osteoblasts and osteocytes expressing the G-protein coupled receptor PTH receptor 1 (PTH1R), and its osteoanabolic effects mostly involve the cAMP/PKA signaling cascade. Considering that PTH-dependent calcium entry in rat enterocytes is reproduced by the adenylate cyclase agonist forskolin or by cAMP analogues, possible involvement of calcium as a second messenger in PTH-dependent cAMP signaling was investigated in MG-63 cells. First, Ca2+ influx was confirmed in Fluo3-loaded MG-63 cells treated with a cell-permeable cAMP analog. Second, PTH (1–34) and forskolin promoted calcium influxes that were completely abrogated by the PKA inhibitor H-89. Ca2+ entry was not reproduced when PTH (1–34) was combined with the PKC-activating competitor PTH (3–34). Vanilloid transient potential (TRPV) channel inhibitor Ruthenium Red, but not a voltage-dependent calcium channel (VDCC) inhibitor nifedipine, efficiently stunted Ca2+ entry, and comparable abrogation was reproduced in cells treated with TRPV4-selective inhibitor RN-1734 or transfected with TRPV4-specific siRNA. Interestingly, PTH-driven Ca2+ through TRPV4 significantly inhibited MG63 cell migration through a mechanism requiring extracellular Ca2+. In contrast, the inhibitory effects of forskolin on migration were refractory to TRPV4 silencing or to RN-1734. Altogether, our results indicate that single treatment with PTH (1–34) promotes extracellular calcium entry through TRPV4 channels in MG-63 cells through a cAMP/PKA-dependent mechanism, and that this influx affects cell migration.  相似文献   

16.
《Cellular signalling》2014,26(1):56-69
Uveal melanoma (UM) is both the most common and fatal intraocular cancer among adults worldwide. As with all types of neoplasia, changes in Ca2+ channel regulation can contribute to the onset and progression of this pathological condition. Transient receptor potential channels (TRPs) and cannabinoid receptor type 1 (CB1) are two different types of Ca2+ permeation pathways that can be dysregulated during neoplasia. We determined in malignant human UM and healthy uvea and four different UM cell lines whether there is gene and functional expression of TRP subtypes and CB1 since they could serve as drug targets to either prevent or inhibit initiation and progression of UM. RT-PCR, Ca2+ transients, immunohistochemistry and planar patch-clamp analysis probed for their gene expression and functional activity, respectively. In UM cells, TRPV1 and TRPM8 gene expression was identified. Capsaicin (CAP), menthol or icilin induced Ca2+ transients as well as changes in ion current behavior characteristic of TRPV1 and TRPM8 expression. Such effects were blocked with either La3+, capsazepine (CPZ) or BCTC. TRPA1 and CB1 are highly expressed in human uvea, but TRPA1 is not expressed in all UM cell lines. In UM cells, the CB1 agonist, WIN 55,212-2, induced Ca2+ transients, which were suppressed by La3+ and CPZ whereas CAP-induced Ca2+ transients could also be suppressed by CB1 activation. Identification of functional TRPV1, TRPM8, TRPA1 and CB1 expression in these tissues may provide novel drug targets for treatment of this aggressive neoplastic disease.  相似文献   

17.
The effects of intracellular application of trypsin on the Cl current induced by hypotonic cell swelling (I Cl,swell) in human prostate cancer epithelial cells (LNCaP) was studied using the patch-clamp technique. In cells predialyzed with 1 mg/mL trypsin, I Cl,swell developed and diminished in response to the application and withdrawal of hypotonic solution about three times faster than that in control cells. In trypsin-infused cells, I Cl,swell also had about twofold higher current density and displayed considerably slowed voltage-dependent inactivation, which was quite pronounced in control cells at potentials above +60 mV. Trypsin-induced modification of I Cl,swell could be prevented by coinfusion of 10 mg/mL soybean trypsin inhibitor, suggesting that proteolytic cleavage of essential intracellular structural domains of the I Cl,swell-carrying volume-regulated anion channel (VRAC) was responsible for this functional modification. The effect of trypsin was not dependent on the presence of intracellular ATP. We conclude that VRACs, similarly to voltage-gated Na+, K+, and Cl channels, possess intracellular inactivation domain(s) subjected to proteolytic cleavage that may function in conformity with the classical ball-and-chain inactivation model.  相似文献   

18.
TRPM2 is a member of the melastatin-related TRP (transient receptor potential) subfamily. It is expressed in brain and lymphocytes and forms a cation channel that is activated by intracellular ADP-ribose and associated with cell death. In this study we investigated the calcium dependence of human TRPM2 expressed under a tetracycline-dependent promoter in HEK-293 cells. TRPM2 expression was associated with enhanced hydrogen peroxide-evoked intracellular calcium signals. In whole-cell patch clamp recordings, switching from barium- to calcium-containing extracellular solution markedly activated TRPM2 as long as ADP-ribose was in the patch pipette and exogenous intracellular calcium buffering was minimal. We suggest this effect reveals a critical dependence of TRPM2 channel activity on intracellular calcium. In the absence of extracellular calcium we observed concentration-dependent activation of TRPM2 channels by calcium delivered from the patch pipette (EC(50) 340 nM, slope 4.9); the maximum effect was at least as large as that evoked by extracellular calcium. Intracellular dialysis of cells with high concentrations of EGTA or 1,2-bis(o-Aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) strongly reduced the amplitude of the extracellular calcium response, and the residual response was abolished by a mixture of high and low affinity calcium buffers. TRPM2 channel currents in inside-out patches showed a strong requirement for Ca(2+) at the intracellular face of the membrane. We suggest that calcium entering via TRPM2 proteins acts at an intracellular calcium sensor closely associated with the channel, providing essential positive feedback for channel activation.  相似文献   

19.
Kim BJ  Jeon JH  Kim SJ  So I  Kim KW 《Molecules and cells》2007,23(3):363-369
Mitochondria play a central role in energy-generating processes and may be involved in the regulation of channels and receptors. Here we investigated TRPM7, an ion channel and functional kinase, and its regulation by mitochondria. Proton ionophores such as CCCP elicited a rapid decrease in outward TRPM7 whole-cell currents but a slight increase in inward currents with pipette solutions containing no MgATP. With pipette solutions containing 3 mM MgATP, however, CCCP increased both outward and inward TRPM7 currents. This effect was reproducible and fully reversible, and repeated application of CCCP yielded similar decreases in current amplitude. Oligomycin, an inhibitor of F1/FO-ATP synthase, inhibited outward whole-cell currents but did not affect inward currents. The respiratory chain complex I inhibitor, rotenone, and complex III inhibitor, antimycin A, were without effect as were kaempferol, an activator of the mitochondrial Ca2+ uniporter, and ruthenium red, an inhibitor of the mitochondrial Ca2+ uniporter. These results suggest that the inner membrane potential (as regulated by proton ionophores) and the F1/FO-ATP synthase of mitochondria are important in regulating TRPM7 channels.  相似文献   

20.
Ca(2+) influx by store-operated Ca(2+) channels is a key component of the receptor-evoked Ca(2+) signal. In all cells examined, transient receptor potential canonical (TRPC) channels mediate a significant portion of the receptor-stimulated Ca(2+) influx. Recent studies have revealed how STIM1 activates TRPC1 in response to store depletion; however, the role of STIM1 in TRPC channel activation by receptor stimulation is not fully understood. Here, we established mutants of TRPC channels that could not be activated by STIM1 but were activated by the "charge-swap" mutant STIM1(K684E,K685E). Significantly, WT but not mutant TRPC channels were inhibited by scavenging STIM1 with Orai1(R91W), indicating the STIM1 dependence and independence of WT and mutant TRPC channels, respectively. Importantly, mutant TRPC channels were robustly activated by receptor stimulation. Moreover, STIM1 and STIM1(K684E,K685E) reciprocally affected receptor-activated WT and mutant TRPC channels. Together, these findings indicate that TRPC channels can function as STIM1-dependent and STIM1-independent channels, which increases the versatility of TRPC channel function and their role in receptor-stimulated Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号