首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evolutionary shifts in diet composition are presumably accompanied by simultaneous changes in digestive physiology. The adaptive modulation hypothesis predicts that activities of digestive enzymes should match the relative levels of their substrates in an animal's diet so that available membrane space and synthetic energy are not wasted on enzymes in excess of need. However, previous studies on captive passerine birds showed high intraspecific phenotypic flexibility only in proteases but not in carbohydrases in response to varying diet composition. In this study, we measured the activities of pancreatic, intestinal, and hepatic enzymes in six wild-caught passerine species. We predicted that if the adaptive modulation hypothesis holds during evolutionary shifts in diet composition in birds, then mass-specific activities of digestive enzymes should be correlated positively with the content of their relevant substrates in species' diets. Whereas mass-specific activities of proteases (aminopeptidase-N, trypsin, chymotrypsin, alanine aminotransferase) were not correlated with estimated dietary protein content, mass-specific activities of all studied carbohydrases (amylase, maltase, sucrase) were positively correlated with estimated dietary starch content. We conclude that activities of carbohydrases but not proteases are evolutionarily matched to diet composition in passerine birds. We hypothesize that the need for nitrogen and essential amino acids can prevent the evolution of a low activity of proteases, even in species feeding on a low-protein diet.  相似文献   

2.
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.  相似文献   

3.
Rhomboid proteases are the largest family of enzymes that hydrolyze peptide bonds within the cell membrane. Although discovered to be serine proteases only a decade ago, rhomboid proteases are already considered to be the best understood intramembrane proteases. The presence of rhomboid proteins in all domains of life emphasizes their importance but makes their evolutionary history difficult to chart with confidence. Phylogenetics nevertheless offers three guiding principles for interpreting rhomboid function. The near ubiquity of rhomboid proteases across evolution suggests broad, organizational roles that are not directly essential for cell survival. Functions have been deciphered in only about a dozen organisms and fall into four general categories: initiating cell signaling in animals, facilitating bacterial quorum sensing, regulating mitochondrial homeostasis, and dismantling adhesion complexes of parasitic protozoa. Although in no organism has the full complement of rhomboid function yet been elucidated, links to devastating human disease are emerging rapidly, including to Parkinson's disease, type II diabetes, cancer, and bacterial and malaria infection. Rhomboid proteases are unlike most proteolytic enzymes, because they are membrane-immersed; understanding how the membrane immersion affects their function remains a key challenge.  相似文献   

4.
5.
Abstract. Protease activity in the midgut gland, gastric chamber, and gastric juice from the crabs Callinectes bellicosus and Callinectes arcuatus was characterized by several methods, confirming that the composition of digestive proteases is the same in the gastric juice and the midgut gland. Gastric juice was suitable for the identification and characterization of the proteinases trypsin and chymotrypsin. Such enzymes were presented as isotrypsins and isochymotrypsins. Proteinase composition evaluated by SDS-PAGE and substrate-SDS-PAGE showed differences between species, but not between gender. Proteinases were thermostable at 40°–50°C for 1 h and showed maximum activity at pH 6–8, making the use of digestive proteinases for evaluations of protein digestibility by the pHstat method possible. We propose using gastric juice as a source of digestive enzymes for in vitro studies of enzymes in digestibility assays and characterization procedures.  相似文献   

6.
《Annals of botany》1999,83(6):593-599
Proteases are critical regulatory factors for many metabolic cellular processes as well as being vital for degrading proteins damaged during environmental stresses. Many of those responsible for targeted protein degradation require the hydrolysis of ATP, and one class that has attracted much attention recently are the Clp proteases. They are among the best characterized proteases to date, and were the first shown to rely on an ATPase regulatory subunit possessing molecular chaperone activity, which functions both within the proteolytic complex and independently. A range of Clp proteins has been identified from many different bacteria and eukaryotes, with by far the greatest number and diversity of forms in oxygenic photobionts such as cyanobacteria and higher plants. Functionally, Clp proteins have also evolved into one of the more critical proteolytic enzymes within photobionts, and it is now somewhat of a paradox that we currently know least about Clp protease functions in the photosynthetic organisms, where they have their most important roles. This discrepancy is now being addressed, with studies on Clp protein in cyanobacteria and, in an increasing number, in higher plants.  相似文献   

7.
Among the different aspects of recent progress in the field of metallocarboxypeptidases has been the elucidation of the three dimensional structures of the pro-segments (in monomeric or oligomeric species) and their role in the expression, folding and inhibition/activation of the pancreatic and pancreatic-like forms. Also of great significance has been the cloning and characterization of several new regulatory carboxypeptidases, enzymes that are related with important functions in protein and peptide processing and that show significant structural differences among them and also with the digestive ones. Many regulatory carboxypeptidases lack a pro-region, unlike the digestive forms or others in between from the evolutionary point of view. Finally, important advances have been made on the finding and characterization of new protein inhibitors of metallocarboxypeptidases, some of them with interesting potential applications in the biotechnological/biomedical fields. These advances are analyzed here and compared with the earlier observations in this field, which was first explored by Hans Neurath and collaborators.  相似文献   

8.
Juvenile piracanjuba, Brycon orbignyanus, in the wild consume protein from both plant and animal sources. Digestion of protein in piracanjuba begins in the stomach with pepsin, at low pH, and is followed by hydrolysis at alkaline pH in the lumen of the intestine. The digestive system in piracanjuba was evaluated to characterize the enzymes responsible for the digestion of feed protein and their composition. The gastric tissue synthesizes pepsin and the intestine tissues trypsin and chymotrypsin. Operational variables were evaluated and defined for future studies of the digestive system physiology. The enzymatic activity in the intestine and the relative concentration of enzymes were heavily influenced by the composition of the feed and the feeding regime, as detected by substrate-SDS-PAGE. Piracanjuba possess a mechanism of enzyme adaptation responding to food quality and regime, by varying the amount and composition of digestive proteases. This is a requisite study to determine the enzymes digesting protein in food and their characteristics and to gain some clues about the possible regulation mechanisms of enzyme synthesis in piracanjuba.  相似文献   

9.
Aravind L  Koonin EV 《Proteins》2002,46(4):355-367
A comprehensive sequence and structural comparative analysis of the caspase-hemoglobinase protein fold resulted in the delineation of the minimal structural core of the protease domain and the identification of numerous, previously undetected members, including a new protease family typified by the HetF protein from the cyanobacterium Nostoc. The first bacterial homologs of legumains and hemoglobinases were also identified. Most proteins containing this fold are known or predicted to be active proteases, but multiple, independent inactivations were noticed in nearly all lineages. Together with the tendency of caspase-related proteases to form intramolecular or intermolecular dimers, this suggests a widespread regulatory role for the inactive forms. A classification of the caspase-hemoglobinase fold was developed to reflect the inferred evolutionary relationships between the constituent protein families. Proteins containing this domain were so far detected almost exclusively in bacteria and eukaryotes. This analysis indicates that caspase-hemoglobinase-fold proteases and their inactivated derivatives are widespread in diverse bacteria, particularly those with a complex development, such as Streptomyces, Anabaena, Mesorhizobium, and Myxococcus. The eukaryotic separin family was shown to be most closely related to the mainly prokaryotic HetF family. The phyletic patterns and evolutionary relationships between these proteins suggest that they probably were acquired by eukaryotes from bacteria during the primary, promitochondrial endosymbiosis. A similar scenario, supported by phylogenetic analysis, seems to apply to metacaspases and paracaspases, with the latter, perhaps, being acquired in an independent horizontal transfer to the eukaryotes. The acquisition of the caspase-hemoglobinase-fold domains by eukaryotes might have been critical in the evolution of important eukaryotic processes, such as mitosis and programmed cell death.  相似文献   

10.
The structural features and evolutionary interrelationships of the intracellular Ca2+-dependent cysteine enzymes calpains, proteases of the family C2 (EC 3.4.22.17), are considered. A variety of identified sequences of calpains and calpain-like polypeptides found in organisms of different taxons, from the simplest to mammals, are described. Calpains of the major evolutionary groups, typical and atypical, are classified by the analysis of their phylogenetic tree and are differentiated due to the presence of the calmodulin-like Ca2+-binding domain. It is shown that, along with enzymes having "advanced" characteristics (heterodimeric structure, presence of tissue-specific isoforms and splice variants, regulation by the endogenous inhibitor calpastatin, and others), higher organisms contain homologues of calpains of lower eukaryotes. A high degree of homology of the catalytic domain of calpains and the variable structure of other functional domains indicate that calpains are implicated in various physiological processes with the retention of their regulatory role.  相似文献   

11.
The structural features and evolutionary interrelationships of the intracellular Ca2+-dependent cysteine enzymes calpains, proteases of the family C2 (EC 3.4.22.17), are considered. A variety of identified sequences of calpains and calpain-like polypeptides found in organisms of different taxons, from the protozoa to mammals, are described. Calpains of the major evolutionary groups, typical and atypical, are classified by the analysis of their phylogenetic tree and are differentiated due to the presence of the calmodulin-like Ca2+-binding domain. It is shown that, along with enzymes having “advanced” characteristics (heterodimeric structure, presence of tissue-specific isoforms and splice variants, regulation by the endogenous inhibitor calpastatin, and others), higher organisms contain homologues of calpains of lower eukaryotes. A high degree of homology of the catalytic domain of calpains and the variable structure of other functional domains indicate that calpains are implicated in various physiological processes with the retention of their regulatory role.  相似文献   

12.
Cutting proteins within lipid bilayers: rhomboid structure and mechanism   总被引:1,自引:0,他引:1  
Rhomboids were only discovered to be novel proteases in 2001, but progress on understanding this newest family of intramembrane proteases has been rapid. They are now the best characterized of these rather mysterious enzymes that cleave transmembrane domains within the lipid bilayer. In particular, the biochemical analysis of solubilized rhomboids and, most recently, a flurry of high-resolution crystal structures, have led to real insight into their enzymology. Long-standing questions about how it is possible for a water-requiring proteolytic reaction to occur in the lipid bilayer are now answered for the rhomboids. Intramembrane proteases, which control many medically important biological processes, have made the transition from rather heretical outsiders to novel enzymes that are becoming well understood.  相似文献   

13.
The ability of various xylotrophs to produce extracellular proteolytic enzymes has been studied, with emphasis on medium-related factors regulating their secretion. Direct measurement of proteolytic activity in the culture liquid and postelectrophoresis determination of protease activity in polyacrylamide gel copolymerized with gelatin demonstrated that the secreted enzymes are quantitatively and qualitatively diverse. Activity levels of extracellular proteolytic enzymes strongly depend on pH and contents of protein and carbohydrate in the medium. All secreted proteases notably differed in molecular weight (of 51 kDa or higher and in excess of 95 kDa) and belonged mostly to two classes of proteolytic enzymes (serine proteases and metalloproteinases).  相似文献   

14.
Bordo D  Bork P 《EMBO reports》2002,3(8):741-746
Rhodanese domains are ubiquitous structural modules occurring in the three major evolutionary phyla. They are found as tandem repeats, with the C-terminal domain hosting the properly structured active-site Cys residue, as single domain proteins or in combination with distinct protein domains. An increasing number of reports indicate that rhodanese modules are versatile sulfur carriers that have adapted their function to fulfill the need for reactive sulfane sulfur in distinct metabolic and regulatory pathways. Recent investigations have shown that rhodanese domains are also structurally related to the catalytic subunit of Cdc25 phosphatase enzymes and that the two enzyme families are likely to share a common evolutionary origin. In this review, the rhodanese/Cdc25 phosphatase superfamily is analyzed. Although the identification of their biological substrates has thus far proven elusive, the emerging picture points to a role for the amino-acid composition of the active-site loop in substrate recognition/specificity. Furthermore, the frequently observed association of catalytically inactive rhodanese modules with other protein domains suggests a distinct regulatory role for these inactive domains, possibly in connection with signaling.  相似文献   

15.
The ability of various xylotrophs to produce extracellular proteolytic enzymes has been studied, with emphasis on medium-related factors regulating their secretion. Direct measurement of proteolytic activity in the culture liquid and postelectrophoresis determination of protease activity in polyacrylamide gel copolymerized with gelatin demonstrated that the secreted enzymes are quantitatively and qualitatively diverse. Activity levels of extracellular proteolytic enzymes strongly depend on pH and contents of protein and carbohydrate in the medium. All secreted proteases notably differed in molecular weight (of 51 kDa or higher and in excess of 95 kDa) and belonged mostly to two classes of proteolytic enzymes (serine proteases and metalloproteinases).  相似文献   

16.
Verhagen AM  Coulson EJ  Vaux DL 《Genome biology》2001,2(7):reviews3009.1-reviews300910
Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.  相似文献   

17.
18.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

19.
We characterized major digestive enzymes in Panulirus argus using a combination of biochemical assays and substrate-(SDS or native)-PAGE. Protease and amylase activities were found in the gastric juice while esterase and lipase activities were higher in the digestive gland. Trypsin-like activity was higher than chymotrypsin-like activity in the gastric juice and digestive gland. Stability and optimal conditions for digestive enzyme activities were examined under different pHs, temperature and ionic strength. The use of protease inhibitors showed the prevalence of serine proteases and metalloproteases. Results for serine proteases were corroborated by zymograms where several isotrypsins-like (17-21 kDa) and isochymotrypsin-like enzymes (23-38 kDa) were identified. Amylases (38-47 kDa) were detected in zymograms and a complex array of non-specific esterases isoenzymes was found in the digestive gland. Isoenzyme polymorphism was found for trypsin, amylase, and esterase. This study is the first to evidence the biochemical bases of the plasticity in feeding habits of P. argus. Distribution and properties of enzymes provided some indication on how the digestion takes place and constitute baseline data for further studies on the digestion physiology of spiny lobsters.  相似文献   

20.
Lysosomal cysteine proteases: more than scavengers   总被引:3,自引:0,他引:3  
Lysosomal cysteine proteases were believed to be mainly involved in intracellular protein degradation. Under special conditions they have been found outside lysosomes resulting in pathological conditions. With the discovery of a series of new cathepsins with restricted tissue distributions, it has become evident that these enzymes must be involved in a range of specific cellular tasks much broader than as simple housekeeping enzymes. It is therefore timely to review and discuss the various physiological roles of mammalian lysosomal papain-like cysteine proteases as well as their mechanisms of action and the regulation of their activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号