首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CYP2E1 causes oxidative stress mediated cell death; the latter is one mechanism for endoplasmic reticulum (ER) stress in the cell. Unfolded proteins accumulate during ER stress and ER resident proteins GRP78 and GRP94 protect cells against ER dysfunction. We examined the possible role of GRP78 and GRP94 as protective factors against CYP2E1-mediated toxicity in HepG2 cells expressing CYP2E1 (E47 cells). E47 cells expressed high levels of CYP2E1 protein and catalytic activity which is associated with increased ROS generation, lipid peroxidation and the elevated presence of ubiquinated and aggregated proteins as compared to control HepG2 C34 cells which do not express CYP2E1. The mRNA and protein expression of GRP78 and GRP94 were decreased in E47 cells compared to the C34 cells, which may explain the accumulation of ubiquinated and aggregated proteins. Expression of these GRP proteins was induced with the ER stress agent thapsigargin in E47 cells, and E47 cells were more resistant to the toxicity caused by thapsigargin and calcimycin, possibly due to this upregulation and also because of the high expression of GSH and antioxidant enzymes in E47 cells. Antioxidants such as trolox and N-acetylcysteine increased GRP78 and GRP94 levels in the E47 cells, suggesting that CYP2E1- derived oxidant stress was responsible for down regulation of these GRPs in the E47 cells. Thapsigargin mediated toxicity was decreased in cells treated with the antioxidant trolox indicating a role for oxidative stress in this toxicity. These results suggest that CYP2E1 mediated oxidative stress downregulates the expression of GRP proteins in HepG2 cells and oxidative stress is an important mechanism in causing ER dysfunction in these cells.  相似文献   

2.
3.
GRP94 is an inducible resident endoplasmic reticulum/sarcoplasmic reticulum (ER/SR) glycoprotein that functions as a protein chaperone and Ca(2+) regulator. GRP94 has been reported to be a substrate for protein kinase CK2 in vitro, although its phosphorylation in intact cells remains unreported. In Sf21 insect cells, overexpression of canine GRP94 led to the appearance of a multiplet of three or more molecular-mass isoforms which was reduced to a single mobility form following treatment of cells with tunicamycin, suggesting stable accumulations of consecutively modified protein. Metabolic labeling of Sf21 cells with (32)P(i) led to a constitutive phosphorylation of GRP94 which, based upon phosphopeptide mapping, occurred specifically on CK2-sensitive sites. Among the GRP94 multiplet, however, only the lowest mobility form of GRP94 was phosphorylated, even though in vitro phosphorylation of GRP94 by CK2 led to phosphorylation of all glycosylated forms. The (32)P(i) incorporation into GRP94 indicated a slow turnover of phosphate incorporation that was unaffected by inhibition of biosynthesis, resulting in a steady-state level of phospho-GRP94 on CK2 sites. These data support a role for protein kinase CK2 in the cell biology for GRP94 and other resident ER/SR proteins that may occur in ER compartments.  相似文献   

4.
Previous work has demonstrated that the function of extrahepatic cytochrome P450 CYP1A1 is dependent on the availability of heme. CYP1A1 is involved in the activation of polyaromatic hydrocarbons. In the present study we used a transgenic mouse model with chronic impairment of heme synthesis - female porphobilinogen deaminase-deficient (PBGD-/-) mice - to investigate the effects of limited heme in untreated and beta-naphthoflavone (beta-NF)-treated animals on the function of CYP1A1 in brain. The heme content of PBGD-/- mice was diminished in the liver and brain compared to wild types. In the liver, partial heme deficiency led to less potent induction of CYP1A1 mRNA after beta-NF treatment. In the brain, CYP1A1 protein was detected not only at the endoplasmic reticulum (ER), but also in the cytosol of PBGD-/- mice. Furthermore, 7-deethylation of ethoxyresorufin, an indicator of CYP1A1 metabolic activity, could be restored by heme in cytosol of PBGD-/- mouse brain. Independent of the genotype, we found only one cyp1a1 gene product, indicating that the cytosolic appearance of CYP1A1 most likely did not originate from mutant alleles. We conclude that heme deficiency in the brain leads to incomplete heme saturation of CYP1A1, which causes its improper incorporation into the ER membrane and persistence in the cytosol. It is suggested that diseases caused by relative heme deficiency, such as hepatic porphyrias, may lead to impaired hemoprotein function in brain.  相似文献   

5.
Mechanism-based inactivation of liver microsomal cytochromes P450 3A (CYP 3A, P450s 3A) in vivo and/or in vitro, via heme modification of the protein, results in accelerated proteolytic degradation of the enzyme that is preceded by the ubiquitination of the protein, thereby implicating the ubiquitin-ATP-dependent 26S proteasomal system. In this study, this involvement is confirmed with the use of the proteasomal inhibitors aclarubicin and MG-132 as probes, in isolated rat hepatocytes treated with the P450 3A mechanism-based inactivator, 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1, 4-dihydropyridine (DDEP). In addition, the findings reveal that during the course of this proteolysis, the endoplasmic reticulum (ER)-anchored DDEP-inactivated P450 3A is translocated from the ER to the cytosol in a brefeldin A-insensitive manner.  相似文献   

6.
Microsomal triglyceride transfer protein (MTP) is an intraluminal protein in the endoplasmic reticulum (ER) that is essential for the assembly of apolipoprotein B (apoB)-containing lipoproteins. In this study, we examine how the livers of mice respond to two distinct methods of blocking MTP function: Cre-mediated disruption of the gene for MTP and chemical inhibition of MTP activity. Blocking MTP significantly reduced plasma levels of triglycerides, cholesterol, and apoB-containing lipoproteins in both wild-type C57BL/6 and LDL receptor-deficient mice. While treating LDL receptor-deficient mice with an MTP inhibitor for 7 days lowered plasma lipids to control levels, liver triglyceride levels were increased by only 4-fold. Plasma levels of apoB-100 and apoB-48 fell by >90% and 65%, respectively, but neither apoB isoform accumulated in hepatic microsomes. Surprisingly, loss of MTP expression was associated with a nearly complete absence of apoB-100 in hepatic microsomes. Levels of microsomal luminal chaperone proteins [e.g., protein disulfide isomerase, glucose-regulated protein 78 (GRP78), and GRP94] and cytosolic heat shock proteins (HSPs) (e.g., HSP60, HSC, HSP70, and HSP90) were unaffected by MTP inhibition. These findings show that the liver responds rapidly to inhibition of MTP by degrading apoB and preventing its accumulation in the ER. The rapid degradation of secretion-incompetent apoB in the ER may block the induction of proteins associated with unfolded protein and heat shock responses.  相似文献   

7.
Drug oxidation activities of 12 recombinant human cytochrome P450s (P450) coexpressed with human NADPH-P450 reductase (NPR) in bacterial membranes (P450/NPR membranes) were determined and compared with those of other recombinant systems and those of human liver microsomes. Addition of exogenous membrane-bound NPR to the P450/NPR membranes enhanced the catalytic activities of CYP2C8, CYP2C9, CYP2C19, CYP3A4, and CYP3A5. Enhancement of activities of CYP1A1, CYP1A2, CYP1B1, CYP2A6, CYP2B6, CYP2D6, and CYP2E1 in membranes was not observed after the addition of NPR (4 molar excess to each P450). Exogenous purified human cytochrome b5 (b5) further enhanced catalytic activities of CYP2A6, CYP2B6, CYP2C8, CYP2E1, CYP3A4, and CYP3A5/NPR membranes. Catalytic activities of CYP2C9 and CYP2C19 were enhanced by addition of b5 in reconstituted systems but not in the P450/NPR membranes. Apo b5 (devoid of heme) enhanced catalytic activities when added to both membrane and reconstituted systems, except for CYP2E1/NPR membranes and the reconstituted system containing purified CYP2E1 and NPR. Catalytic activities in P450/NPR membranes fortified with b5 were roughly similar to those measured with microsomes of insect cells coexpressing P450 with NPR (and b5) and/or human liver microsomes, based on equivalent P450 contents. These results suggest that interactions of P450 and NPR coexpressed in membranes or mixed in reconstituted systems appear to be different in some human CYP2 family enzymes, possibly due to a conformational role of b5. P450/NPR membrane systems containing b5 are useful models for prediction of the rates for liver microsomal P450-dependent drug oxidations.  相似文献   

8.
The resident integral hepatic endoplasmic reticulum (ER) proteins, cytochromes P450 (P450s), turn over in vivo with widely varying half-lives. We and others (Correia et al., Arch. Biochem. Biophys. 297, 228, 1992; and Tierney et al., Arch. Biochem. Biophys. 293, 9, 1992) have previously shown that in intact animals, the hepatic P450s of the 3A and 2E1 subfamilies are first ubiquitinated and then proteolyzed after their drug-induced suicide inactivation. Our findings with intact rat hepatocytes and ER preparations containing native P450s and P450s inactivated via heme modification of the protein have revealed that the proteolytic degradation of heme-modified P450s requires a cytosolic ATP-dependent proteolytic system rather than lysosomal or ER proteases (Correia et al., Arch. Biochem. Biophys. 297, 228, 1992). Using purified cumene hydroperoxide-inactivated P450s (rat liver P450s 2B1 or 3A and/or a recombinant human liver P450 3A4) as models, we now document that these heme-modified enzymes are indeed ubiquitinated and then proteolyzed by the 26S proteasome, but not by its 20S proteolytic core. In addition, our studies indicate that the ubiquitination of these heme-modified P450s is preceded by their phosphorylation. It remains to be determined whether, in common with several other cellular proteins, such P450 phosphorylation is indeed required for their degradation. Nevertheless, these findings suggest that the membrane-anchored P450s are to be included in the growing class of ER proteins that undergo ubiquitin-dependent 26S proteasomal degradation.  相似文献   

9.
The 94-kDa glucose-regulated protein (GRP94) is a glycoprotein in the endoplasmic reticulum (ER). It has been characterized as a Ca2+-binding protein and a molecular chaperone. In this report we show that highly purified GRP94 exhibits an active Mg2+-dependent serine kinase activity (termed 94-kinase). The 94-kinase can be recovered from ER membrane fractions and is able to phosphorylate both the constitutive and stress-induced forms of GRP94, correlating with their induction kinetics. The 94-kinase activity is distinct from casein kinase II. In contrast to the heat-stable, Ca2+-dependent autophosphorylation activity recently reported for GRP94, the labile 94-kinase activity is inhibited by Ca2+. We determined that the phosphopeptide map of in vitro phosphorylated GRP94 by the 94-kinase resembles that of the in vivo phosphorylated GRP94. Further, the 94-kinase activity can be specifically stimulated by GRP78, a coregulated protein in the ER known to interact with GRP94. J. Cell. Physiol. 170:115–129, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Glucose-regulated protein 94 is the HSP90-like protein in the lumen of the endoplasmic reticulum and therefore it chaperones secreted and membrane proteins. It has essential functions in development and physiology of multicellular organisms, at least in part because of this unique clientele. GRP94 shares many biochemical features with other HSP90 proteins, in particular its domain structure and ATPase activity, but also displays distinct activities, such as calcium binding, necessitated by the conditions in the endoplasmic reticulum. GRP94's mode of action varies from the general HSP90 theme in the conformational changes induced by nucleotide binding, and in its interactions with co-chaperones, which are very different from known cytosolic co-chaperones. GRP94 is more selective than many of the ER chaperones and the basis for this selectivity remains obscure. Recent development of molecular tools and functional assays has expanded the spectrum of clients that rely on GRP94 activity, but it is still not clear how the chaperone binds them, or what aspect of folding it impacts. These mechanistic questions and the regulation of GRP94 activity by other proteins and by post-translational modification differences pose new questions and present future research avenues. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).  相似文献   

11.
To determine whether protein degradation plays a role in the endoplasmic reticulum (ER) retention of cytochromes P450, the effects of proteasomal inhibitors on the expression and distribution of green fluorescent protein chimeras of CYP2C2 and related proteins was examined. In transfected cells, expression levels of chimeras of full-length CYP2C2 and its cytosolic domain, but not its N-terminal transmembrane sequence, were increased by proteasomal inhibition. Redistribution of all three chimeras from the reticular ER into a perinuclear compartment and, in a subset of cells, also to the cell surface was observed after proteasomal inhibition. Redistribution was blocked by the microtubular inhibitor, nocodazole, suggesting that redistribution to the cell surface followed the conventional vesicular transport pathway. Similar redistributions were detected for BAP31, a CYP2C2 binding chaperone; CYP2E1 and CYP3A4, which are also degraded by the proteasomal pathway; and for cytochrome P450 reductase, which does not undergo proteasomal degradation; but not for the ER membrane proteins, sec61 and calnexin. Redistribution does not result from saturation of an ER retention “receptor” since in some cases protein levels were unaffected. Proteasomal inhibition may, therefore, alter ER retention by affecting a protein critical for ER retention, either directly, or indirectly by affecting the composition of the ER membranes.  相似文献   

12.
Cholera toxin (CT) is an AB5 toxin that moves from the cell surface to the endoplasmic reticulum (ER) by retrograde vesicular transport. In the ER, the catalytic A1 subunit dissociates from the rest of the toxin and enters the cytosol by exploiting the quality control system of ER-associated degradation (ERAD). The driving force for CTA1 dislocation into the cytosol is unknown. Here, we demonstrate that the cytosolic chaperone Hsp90 is required for CTA1 passage into the cytosol. Hsp90 bound to CTA1 in an ATP-dependent manner that was blocked by geldanamycin (GA), an established Hsp90 inhibitor. CT activity against cultured cells and ileal loops was also blocked by GA, as was the ER-to-cytosol export of CTA1. Experiments using RNA interference or N-ethylcarboxamidoadenosine, a drug that inhibits ER-localized GRP94 but not cytosolic Hsp90, confirmed that the inhibitory effects of GA resulted specifically from the loss of Hsp90 activity. This work establishes a functional role for Hsp90 in the ERAD-mediated dislocation of CTA1.  相似文献   

13.
GRP94, an essential endoplasmic reticulum chaperone, is required for the conformational maturation of proteins destined for cell-surface display or export. The extent to which GRP94 and its cytosolic paralog, Hsp90, share a common mechanism remains controversial. GRP94 has not been shown conclusively to hydrolyze ATP or bind cochaperones, and both activities, by contrast, result in conformational changes and N-terminal dimerization in Hsp90 that are critical for its function. Here, we report the 2.4 A crystal structure of mammalian GRP94 in complex with AMPPNP and ADP. The chaperone is conformationally insensitive to the identity of the bound nucleotide, adopting a "twisted V" conformation that precludes N-terminal domain dimerization. We also present conclusive evidence that GRP94 possesses ATPase activity. Our observations provide a structural explanation for GRP94's observed rate of ATP hydrolysis and suggest a model for the role of ATP binding and hydrolysis in the GRP94 chaperone cycle.  相似文献   

14.
GRP94, the endoplasmic reticulum (ER) paralog of the chaperone Hsp90, plays an essential role in the structural maturation or secretion of a subset of proteins destined for transport to the cell surface, such as the Toll-like receptors 2 and 4, and IgG, respectively. GRP94 differs from cytoplasmic Hsp90 by exhibiting very weak ATP binding and hydrolysis activity. GRP94 also binds selectively to a series of substituted adenosine analogs. The high resolution crystal structures at 1.75-2.1 A of the N-terminal and adjacent charged domains of GRP94 in complex with N-ethylcarboxamidoadenosine, radicicol, and 2-chlorodideoxyadenosine reveals a structural mechanism for ligand discrimination among hsp90 family members. The structures also identify a putative subdomain that may act as a ligand-responsive switch. The residues of the charged region fold into a disordered loop whose termini are ordered and continue the twisted beta sheet that forms the structural core of the N-domain. This continuation of the beta sheet past the charged domain suggests a structural basis for the association of the N-terminal and middle domains of the full-length chaperone.  相似文献   

15.
The effect of 3,3-dichlorobenzidine (DCB), a potent inducer of CYP1A, on the levels of heme oxygenase-1 mRNA and metallothionein mRNAs was examined in the kidney, liver and lung of rats administered a single ip dose (157 μmol/kg) of the compound. DCB treatment increased heme oxygenase-I mRNA abundance in the kidney significantly from barely detectable levels in untreated animals; the maximum increase in the liver and lung was 24-fold and 4-fold, respectively. Hepatic microsomal heme oxygenase activity was also induced by DCB. In contrast with DCB, 2 other P450 inducers, β-naphthoflavone (β-NF) and phenobarbital did not elevate tissue HO-1 rnRNA levels. DCB pretreatment also elevated metallothionein mRNA levels in the kidney, liver and lung, with the effect in the lung being the least pronounced. In contrast with HO-1 mRNA, metallothionein mRNA was increased by the other P450 inducers examined. In vivo lipid peroxidation and in vitro NADPH-dependent microsomal lipid peroxidation were increased in the liver of DCB-treated rats but not in those of phenobarbital- or β-naphthoflavone-treated rats. Treatment with DCB or β-NF did not alter total hepatic microsomal P450 content, as measured spectrophotometrically, but induced the activity of CYP1A2. In contrast, the activity of CYP1A1 was induced to a lesser extent by DCB than by β-NF. The data show that DCB induces HO-1 as weD as P450 1A, confirm stimulation of lipid peroxidation by the compound, and suggest oxidative stress as a mechanism of HO-1 induction by the compound.  相似文献   

16.
17.
Cytochrome P450 enzymes (P450s) are exceptionally versatile monooxygenases, mediating hydroxylations of unactivated C-H bonds, epoxidations, dealkylations, and N- and S-oxidations as well as other less common reactions. In the conventional view of the catalytic cycle, based upon studies of P450s in vitro, substrate binding to the Fe(III) resting state facilitates the first 1-electron reduction of the heme. However, the resting state of P450s in vivo has not been examined. In the present study, whole cell difference spectroscopy of bacterial (CYP101A1 and CYP176A1, i.e. P450cam and P450cin) and mammalian (CYP1A2, CYP2C9, CYP2A6, CYP2C19, and CYP3A4) P450s expressed within intact Escherichia coli revealed that both Fe(III) and Fe(II) forms of the enzyme are present in the absence of substrates. The relevance of this finding was supported by similar observations of Fe(II) P450 heme in intact rat hepatocytes. Electron paramagnetic resonance (EPR) spectroscopy of the bacterial forms in intact cells showed that a proportion of the P450 in cells was in an EPR-silent form in the native state consistent with the presence of Fe(II) P450. Coexpression of suitable cognate electron donors increased the degree of endogenous reduction to over 80%. A significant proportion of intracellular P450 remained in the Fe(II) form after vigorous aeration of cells. The addition of substrates increased the proportion of Fe(II) heme, suggesting a kinetic gate to heme reduction in the absence of substrate. In summary, these observations suggest that the resting state of P450s should be regarded as a mixture of Fe(III) and Fe(II) forms in both aerobic and oxygen-limited conditions.  相似文献   

18.
An extensive body of research on the structural properties of cytochrome P450 enzymes has established that these proteins possess a b-type heme prosthetic group which is noncovalently bound at the active site. Coordinate, electrostatic, and hydrogen bond interactions between the protein backbone and heme functional groups are readily overcome upon mild acid treatment of the enzyme, which releases free heme from the protein. In the present study, we have used a combination of HPLC, LC/ESI-MS, and SDS-PAGE techniques to demonstrate that members of the mammalian CYP4B, CYP4F, and CYP4A subfamilies bind their heme in an unusually tight manner. HPLC chromatography of CYP4B1 on a POROS R2 column under mild acidic conditions caused dissociation of less than one-third of the heme from the protein. Moreover, heme was not substantially removed from CYP4B1 under electrospray or electrophoresis conditions that readily release the prosthetic group from other non-CYP4 P450 isoforms. This was evidenced by an intact protein mass value of 59,217 +/- 3 amu for CYP4B1 (i.e., apoprotein plus heme) and extensive staining of this approximately 60 kDa protein with tetramethylbenzidine/H(2)O(2) following SDS-PAGE. In addition, treatment of CYP4B1, CYP4F3, and CYP4A5/7 with strong base generated a new, chromatographically distinct, polar heme species with a mass of 632.3 amu rather than 616.2 amu. This mass shift is indicative of the incorporation of an oxygen atom into the heme nucleus and is consistent with the presence of a novel covalent ester linkage between the protein backbone of the CYP4 family of mammalian P450s and their heme catalytic center.  相似文献   

19.
Vaccination of mice with GRP94/gp96, the endoplasmic reticulum Hsp90, elicits a variety of immune responses sufficient for tumor rejection and the suppression of metastatic tumor progression. Macrophages are a prominent GRP94/gp96 target, with GRP94/gp96 reported to activate macrophage NF-kappa B signaling and nitric oxide production, as well as the MAP kinase p38, JNK, and ERK signaling cascades. However, recent studies report that heat shock protein elicited macrophage activation is due, in large part, to contaminating endotoxin. To examine the generality of this finding, we have investigated the role of endotoxin in GRP94/gp96-elicited macrophage activation. We report that GRP94/gp96 binds endotoxin in a high-affinity, saturable, and specific manner. Low endotoxin calreticulin and GRP94/gp96 were purified, the latter using a novel method of depyrogenation; this resulted in GRP94/gp96 and calreticulin preparations with endotoxin levels substantially lower than those of previously reported preparations. Low endotoxin GRP94/gp96 retained its native conformation, ligand binding activity, and in vitro chaperone function, yet did not activate macrophage NF-kappa B signaling, nitric oxide production or inducible nitric-oxide synthase production. Low endotoxin GRP94/gp96 and calreticulin did, however, elicit a marked increase in ERK phosphorylation at protein concentrations as low as 2 microg/ml. These results are discussed with respect to current understanding of the contributions of endotoxin and heat shock/chaperone proteins to the stimulation of innate immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号