首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species composition and forest structure change with topography.However, mechanisms for topographical vegetation changes are still not wellunderstood, because a topographical gradient is a complex environmentalgradientinclusive of many factors. The foot of Mt. Kinabalu is covered with three typesof geological substrates, i.e. Quaternary and Tertiary sedimentary rocks andultrabasic (serpentine) rock. Quaternary and Tertiary sedimentaryrocks are different in site age, but controlled in primary minerals. Tertiarysedimentary and ultrabasic rocks are contrasting in primary minerals, but arecomparable in age. This setting provides an opportunity to examine thevegetation differentiation along topographical gradients that are contrastinginmajor-nutrient supply due to the difference in site age and parent rock.We established a total of nine study plots by choosing three topographicalunits(ridge, middle- and lower-slope) on each substrate inthe tropical lower montane forest. Pool size and supply of soil N and Pdecreased upslope on each substrate, and the magnitude of the reduction fromslope to ridge decreased in the order of Quaternary sedimentary > Tertiarysedimentary > ultrabasic rock. Between-substrate difference in soilnutrient condition was greater on the lower-slopes than the ridges.Maximum tree size decreased and stem density increased upslope on eachsubstrate. Detrended correspondence analysis demonstrated that speciescomposition also changed along topographical gradients on all substrates.However, the magnitude of topographical changes in forest structure and speciescomposition varied with substrate and decreased from Quaternary sedimentary>Tertiary sedimentary > ultrabasic rock. The greatest between-substratedifference in vegetation occurred on the lower-slopes. Accordingly, ourresults suggest that the magnitude of vegetation changes due to topographybecomes smaller with decreasing pool size and supply of nutrients.  相似文献   

2.

Background and aims

Tropical rain forests on deeply weathered soils are increasingly thought to be limited by phosphorus (P), where plants and associated organisms would demonstrate adaptations to efficiently recycle P using acid phosphatase from organic matter. The activities of soil and root acid phosphatase were investigated in nine tropical rain forests that demonstrated a 20-fold difference in the soil organic P pool on Mt. Kinabalu, Borneo.

Methods

Acid phosphatase activity was measured at pH6.0 using p-nitrophenyl phosphate as substrate.

Results

The specific phosphatase activity of tree roots on a soil-surface-area basis was significantly positively related with P-use efficiency of above-ground productivity, suggesting a physiological linkage between above and below-ground systems in the adaptation to P deficiency. The phosphatase activities of soils and roots were significantly negatively correlated with the pool size of soil organic P fractions, suggesting that demand for P determines phosphatase activities.

Conclusions

It is suggested that tree roots and soil microbes develop more active phosphatases in response to the chronic shortage of soil P, which forms the basis for an important functional role for the efficient acquisition of P from soil organic matter.  相似文献   

3.
4.
Abstract. Ecological and biogeographic analyses of the tropical rain forest in south Yunnan were made using data from seventeen sample plots and floristic inventories of about 1000 species of seed plants. The rain forest is shown to be a type of true tropical rain forest because it has almost the same profile, physiognomic characteristics, species richness per unit area, numbers of individuals in each tree species and diameter classes of trees as classic lowland tropical rain forests. As the area is at the northern margin of monsoonal tropics, the rain forest differs from equatorial lowland rain forests in having some deciduous trees in the canopy layer, fewer megaphanaerophytes and epiphytes but more species of lianas as well as more species of microphylls. In its floristic composition, about 80% of total families. 94% of total genera and more than 90% of total species are tropical, of which about 38% of genera and 74% of species are tropical Asian. Furthermore, the rain forest has not only almost the same families and genera, but also the same families rank in the top ten both in species richness and in dominance of stems, as lowland forests in southeast Asia. It is indisputable that the flora of the rain forest is part of the tropical Asian flora. However, most of the tropical families and genera have their northern limits in south Yunnan and most have their centre of species diversity in Malesia. More strictly tropical families and genera have relatively lower species richness and importance compared with lowland rain forests in tropical southeast Asia. Thus, the flora also shows characteristics of being at the margin of the tropics. Based mainly on physiognomy and floristic composition the tropical rain forest of Yunnan is classified into two types, i.e. seasonal rain forest and wet seasonal rain forest, the latter is further divided into two subtypes, i.e. mixed rain forest and dipterocarp rain forest. From analysis of geographic elements it is also shown that the tropical rain forest of Yunnan occurs at a geographical nexus with its flora coming mainly from four sources, i.e. Malesia, south Himalayas, Indochina and China.  相似文献   

5.
Mt Kinabalu, Borneo, is characterized by a deep elevational gradient and mosaics of geological substrates. We chose a pair of two geological substrates (sedimentary vs ultrabasic) at five altitudes (800, 1400, 2100, 2700 and 3100 m a.s.l.). We investigated soil nitrogen (N) mineralization and nitrification rates using an incubation technique to assay the pattern and control of soil N status in this environmental matrix. In situ net mineralization rates decreased with elevation on both substrates. The decreasing pattern was linear across altitudes on ultrabasic rock, whereas on sedimentary rock it was depressed in the middle slope wet cloud zone. Sedimentary sites in this zone had low soil redox potential values and this anoxic soil condition might be related to slow N mineralization. The in situ rates were significantly greater (P < 0.05, anova) on sedimentary than on ultrabasic rock at the same altitudes except in the cloud zone. Net mineralization rates of the soils that were collected from different elevations and incubated in the same conditions were statistically invariable (P > 0.05) among the original elevations for sedimentary rock, but were variable (P < 0.05) for ultrabasic rock. Those of the soils that were collected from the same elevation and incubated at different elevations decreased significantly across altitudes (P < 0.05) for sedimentary rock, while they were invariable (P > 0.05) for ultrabasic rock. Thus, temperature had stronger effects on net N mineralization on sedimentary rock, whereas inherent soil quality had stronger effects on ultrabasic rock. Controls of soil N mineralization might be different between the two substrates, leading to diverse biogeochemical site conditions on Kinabalu.  相似文献   

6.
* Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.  相似文献   

7.
8.
An intensive camera-trapping study and a nutrient analysis were carried out to understand how natural licks are important for mammals in inland tropical rain forests where soil cations are usually depleted. Using camera traps, we investigated the fauna, food habits, and the frequency of visitation by species at five natural licks in the Deramakot forest reserve, Sabah, Malaysia. All food-habit types of mammals (carnivore, herbivore-frugivore, insectivore, and omnivore), which included 29 (78.4%) of 37 species known in Deramakot, were recorded at the natural licks. The sambar deer, followed by the bearded pig, the lesser mouse-deer, the Malay badger, and the orangutan were the most commonly recorded species and represented 77.5% in terms of the frequency of appearance in all photographs taken throughout the year. These results indicated that, although the proportion of species recorded at the natural licks relative to the whole mammalian fauna of the forest was high, the frequency of visitation greatly varied among the species, and only a few species dominated. The frequency of visitation seemed to reflect both the density of species and the demand for the minerals, because some endangered, low-density species were more frequently recorded by cameras than expected—for example, the orangutan which was one of the top five species among natural-lick users. The natural licks with greater concentrations of minerals in seepage soil water were significantly preferred by the sambar deer and the bearded pig than those with lower concentrations of minerals. This result suggests that the chemical properties of soil water in natural licks determine the frequency of visitation of these herbivorous species that have strong demand for minerals.  相似文献   

9.
土壤氮矿化作为氮转化的主要过程决定土壤供氮能力。热带森林生态系统往往受磷限制, 氮矿化过程对干旱的响应是否受磷限制的调控值得探讨。该研究以海南三亚甘什岭自然保护区热带低地雨林为研究对象, 利用2019年建立的林内穿透雨减少(50%)及磷添加双因素交互实验平台, 通过野外树脂芯原位培养法研究模拟干旱及磷添加对土壤无机氮(包括铵态氮和硝态氮)含量和氮矿化过程的影响。结果表明: 1)减雨处理显著降低了5和15 cm深度土壤的水分含量, 而对土壤温度没有显著影响。2)减雨处理和减雨与磷添加共同处理无论在旱季还是湿季对0-10 cm土壤无机氮含量均没有产生显著影响, 但磷添加处理在旱季显著降低了土壤硝态氮含量, 表明磷添加处理对氮有效性的影响主要体现在旱季, 而非湿季。3)干旱处理在旱季和湿季均显著降低了土壤净氨化速率和净氮矿化速率, 而磷添加处理和减雨与磷添加共同处理无论在旱季还是湿季对净氨化速率、净硝化速率和净氮矿化速率均没有产生显著影响, 结果表明了干旱能够显著降低土壤净氮矿化速率。4)土壤水分含量与土壤净氨化速率和净氮矿化速率呈显著正相关关系, 同时减雨处理显著影响了土壤净氨化速率与铵态氮含量的关系, 并且在铵态氮含量相等的情况, 随着干旱的影响净氨化速率下降得更快。这表明土壤水分含量变化是影响该研究样地土壤氮矿化的主要因素。上述研究结果说明, 降水变化对热带低地雨林中土壤氮矿化有重要影响, 短期磷添加没有显著影响, 减雨与磷添加对土壤氮矿化过程并没有交互效应。  相似文献   

10.
Eshetu  Zewdu  Högberg  Peter 《Plant and Soil》2000,222(1-2):109-117
We used the natural abundance of 15N in soils in forests, pastures and cultivated lands in the Menagesha and Wendo-Genet areas of Ethiopia to make inferences about the N cycles in these ecosystems. Since we have described the history of these sites based on variations in 13C natural abundance, patterns of δ15N and δ13C values were compared to determine if shifts of 15N correlate with shifts of vegetation. At Menagesha, a > 500-yr-old planted forest, we found δ15N values from −8.8 to +3.5‰ in litter, from −3.5 to +4.5‰ in 0–10 cm soil layer, and from −1.5 to +6.8‰ at >20 cm soil depth. The low δ15N in litter and surface mineral soils suggests that a closed N cycle has operated for a long time. At this site, the low δ13C of the surface horizon and the high δ13C of the lower soil horizons is clear evidence of a long phase of C4 grass dominance or cultivation of C4 crops before the establishment of the forest >500 years ago. In contrast, at Wendo-Genet, high δ13C of soils reveals that most of the land has been uncovered by forests until recently. Soil δ15N was high throughout (3.4–9.8‰), and there were no major differences between forested, cultivated and pasture soils in δ15N values of surface mineral soils. The high δ15N values suggest that open N cycles operate in the Wendo-Genet area. From the points of view of soil fertility management, it is interesting that tall forest ecosystems with relatively closed N cycling could be established on the fairly steep slopes at Menagesha after a long period of grass vegetation cover or cultivation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Aiba  Shin-ichiro  Kitayama  Kanehiro 《Plant Ecology》1999,140(2):139-157
We studied forest structure, composition and tree species diversity of eight plots in an environmental matrix of four altitudes (700, 1700, 2700 and 3100 m) and two types of geological substrates (ultrabasic and non-ultrabasic rocks) on Mount Kinabalu, Borneo. On both substrate series, forest stature, mean leaf area and tree species diversity (both 4.8 cm and 10 cm diameter at breast height [dbh]) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. The decline in stature with altitude was steeper on the ultrabasic substrates than on the non-ultrabasic substrates, and tree species diversity was generally lower on ultrabasic substrates than on non-ultrabasic substrates at 1700 m. The forests on non-ultrabasic substrates at higher altitudes and those on ultrabasic substrates at the lower altitudes were similar in dbh versus tree height allometry, mean leaf area, and generic and familial composition at 1700 m. These contrasting patterns in forest structure and composition between the two substrate series suggested that altitudinal change was compressed on the ultrabasic substrates compared to the non-ultrabasic substrates. Tree species diversity was correlated with maximum tree height and estimated aboveground biomass, but was not with basal area, among the eight study sites. We suggest that forests with higher tree species diversity are characterized by greater biomass allocation to height growth relative to trunk diameter growth under more productive environment than forests with lower tree species diversity.  相似文献   

12.
This study presents the latitudinal variation (from 60° 30′ N to 68° 2′ N latitude) of natural abundances of 15N in the foliage, humus and soils of boreal forests of Finland. Our results clearly showed that N concentration of the foliage did not change significantly with latitudes but their 15N values were significantly higher in higher latitude sites relative to that of the mid and lower latitude sites, indicating the different forms of N uptake at the higher latitudes compared to the lower latitudes. We assume that the higher foliage δ15N values of the higher latitudes trees might be due to either more openness of N cycle (greater proportional N losses) in these latitudes compared to the sites of southern latitudes (lower N losses) or the differences in their mycorrhizal associations. Regression analysis showed that the temperature was the main factor influencing the 15N natural abundance of humus and soil of all forest ecosystems, both before and after clear-cut, whereas rainfall was the main controlling factor to the foliage 15N. Possible reasons behind the increasing δ15N natural abundances of plants and soils with increasing latitudes are discussed in this paper. The clear-cut did not show any specific trend on the 15N fractionation in humus and soil, i.e. both 15N-enrichment and -depletion occurred after clear-cut.  相似文献   

13.
Bailey et al. (1989) and Headland (1987) have recently proposed hypotheses stating that human foragers are unable to live in undisturbed tropical rain forests without some reliance on cultivated foods. The present discussion considers these hypotheses, as well as some of the evidence by which they have been tested. Four conceptual problems in the way these hypotheses have been formulated are identified: (1) assumptions about the relationship between key features of tropical forest ecosystems and human subsistence potential, (2) in-consistencies in the definition of pure foraging, (3) adherence to a dichotomy between foraging and agriculture, the result being that conscious and unconscious effects of exploitation on the demographic parameters of key resources is ignored, and (4) problems in defining the significance of ecotones. I consider the case of Penan hunter-gatherers of Borneo, a population which, by virtue of their reliance on the sago palm Eugeissona utilis, contradicts the conclusions of Bailey et al. and Headland. I consider salient aspects of Penan reliance on Eugeissona, and describe how Penan exploitation of this resource may positively effect its availability. This case is seen to provide a challenge to the hypotheses of Bailey et al. and Headland, not only in the extent to which it contradicts their conclusions but, more significantly, in what it reveals about the assumptions upon which their hypotheses are based. This points to the need for greater precision in the definition of future hypotheses about foraging in tropical forests.  相似文献   

14.
15N自然丰度法在陆地生态系统氮循环研究中的应用   总被引:3,自引:0,他引:3       下载免费PDF全文
随着氮沉降的不断增加以及人们对全球变化问题的日益关注, 稳定同位素技术在全球变化研究中得到广泛的应用。因为植物和土壤的氮同位素组成记录了氮循环影响因子的综合作用, 并且具有测量简单以及不受取样时间和空间限制的优点, 所以氮同位素自然丰度法被用于氮循环的研究中。该文从氮循环过程中植物和土壤的氮分馏入手, 总结国内外相关文献, 阐述了植物和土壤氮自然丰度在预测生态系统氮饱和和氮循环长期变化趋势中的应用; 总结了利用树轮δ 15N法研究氮循环过程中应该注意的事项以及目前尚未解决的问题。  相似文献   

15.
土壤碳、氮稳定同位素自然丰度(δ13C和δ15N)随土壤深度变化的研究,对揭示碳、氮元素生物地球化学循环机制具有重要意义.本文在概述土壤剖面δ13C和δ15N垂直分布特征的基础上,重点介绍了土壤δ13C和δ15N垂直分布模式的影响机制.土壤剖面δ13C垂直分布模式的影响机制主要有3种:1)植被δ13C值的历史变化;2)...  相似文献   

16.
南亚热带森林土壤有机碳组分对模拟酸雨的早期响应   总被引:3,自引:0,他引:3  
应用人工模拟酸雨控制实验,探讨鼎湖山国家级自然保护区三种南亚热带主要植被类型(季风常绿阔叶林、针阔叶混交林和马尾松林)的土壤有机碳组分,包括土壤总有机碳(TOC)、土壤易氧化有机碳(ROC)、土壤不易氧化有机碳(NROC),在不同模拟酸雨处理梯度:对照CK(pH4.5的天然湖水)、pH4.0、pH3.5、pH3.0处理下的响应特征。结果表明:上层土壤(0~20cm)易氧化有机碳、不易氧化有机碳和总有机碳含量与森林类型密切相关,大小顺序均表现为混交林阔叶林马尾松林。经25个月模拟酸雨处理,鼎湖山森林土壤酸化有加剧的趋势;CK、pH4.0、pH3.5、pH3.0四个处理下土壤上层剖面易氧化有机碳含量分别为阔叶林(7.14、8.29、8.74、9.84g·kg-1)、混交林(8.58、8.53、10.28、10.36g·kg-1)和马尾松林(3.90、4.49、4.74、5.48g·kg-1),三个林型土壤易氧化有机碳含量呈现随模拟酸雨强度增加而升高的趋势;森林土壤总有机碳和不易氧化有机碳含量变化缓慢,在各酸梯度处理下差异不显著(P0.05)。研究结果显示,长期的酸雨作用使土壤酸化不断加剧,易氧化有机碳对酸雨的响应更敏感,但其在酸雨下积累的趋势不利于土壤总有机碳的存埋,但关于酸雨对土壤总有机碳的影响仍然需要长期的实验监测。  相似文献   

17.
研究了云南西双版纳热带不同海拔梯度山地雨林枯落物层及土壤层水文功能.结果表明: 土壤容重随着海拔的增加而降低,土壤总孔隙度、非毛管孔隙度、毛管孔隙度、土壤最大持水率、最大持水量、有效持水量和土壤含水量随海拔的增加而增加,局部有所波动;雨季前期含水量、饱和含水量和有效调蓄水空间随海拔的增加而增加,其中,饱和含水量和土壤有效调蓄水空间在不同海拔区差异均显著(P<0.05).土壤渗透性能与总孔隙度和非毛管孔隙度均呈极显著正相关关系(P<0.01),其中,非毛管孔隙对土壤渗透性的影响更为显著.不同海拔枯落物未分解层厚度均占总厚度的一半以上,枯落物厚度均表现为未分解层>半分解层;枯落物总蓄积量和半分解层蓄积量占枯落物总蓄积量的比例均随海拔的增加而增加,说明低海拔枯落物分解速度较慢,高海拔枯落物分解速度较快.不同海拔枯落物半分解层和未分解层最大持水量、最大持水率、自然含水率、有效拦蓄率和有效拦蓄量均随海拔的增加而增加,并且各海拔未分解层均高于半分解层,而有效拦蓄量深度随海拔的增加而降低,局部有所波动.综合未分解层和半分解层的变化规律可知,高海拔拦蓄能力较强,低海拔较弱.不同海拔枯落物持水量随着浸泡时间增加而增加;枯落物吸水速率随着浸泡时间增加而降低,12 h后枯落物吸水速率逐渐趋于饱和.不同海拔枯落物持水量与浸水时间可用对数方程表示;吸水速率与浸泡时间可用冥函数方程表示.综合分析各项因子,低海拔热带山地雨林水源涵养能力普遍低于高海拔.  相似文献   

18.
Although the canopy can play an important role in forest nutrient cycles, canopy‐based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using 15N pool dilution techniques. Measurements took place in the field, in the wet and dry season, using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4+ transformations decreased with increasing elevation; gross rates of NO3? transformations did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient‐addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability. Long‐term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.  相似文献   

19.
20.
The natural abundance of 15N was examined in soil profiles from forests and pastures of the Brazilian Amazon Basin to compare tropical forests on a variety of soil types and to investigate changes in the sources of nitrogen to soils following deforestation for cattle ranching. Six sites in the state of Rondônia, two sites in Pará and one in Amazonas were studied. All sites except one were chronosequences and contained native forest and one or more pastures ranging from 2 to 27 years old. Forest soil 15N values to a depth of 1 m ranged from 8 to 23 and were higher than values typically found in temperate forests. A general pattern of increasing 15N values with depth near the soil surface was broadly similar to patterns in other forests but a decrease in 15N values in many forest profiles between 20 and 40 cm suggests that illuviation of 15N-depleted nitrate may influence total soil 15N values in deeper soil where total N concentrations are low. In four chronosequences in Rondônia, the 15N values of surface soil from pastures were lower than in the original forest and 15N values were increasingly depleted in older pastures. Inputs of atmospheric N by dinitrogen fixation could be an important N source in these pastures. Other pastures in Amazonas and Pará and Rondônia showed no consistent change from forest values. The extent of fractionation that leads to 15N enrichment in soils was broadly similar over a wide range of soil textures and indicated that similar processes control N fractionation and loss under tropical forest over a broad geographic region. Forest 15N profiles were consistent with conceptual models that explain enrichment of soil 15N values by selective loss of 14N during nitrification and denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号