首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Dautry-Varsat 《Biochimie》1986,68(3):375-381
A variety of ligands and macromolecules enter cells by receptor-mediated endocytosis. Ligands bind to their receptors on the cell surface and ligand-receptor complexes are localized in specialized regions of the plasma membrane called coated pits. Coated pits invaginate and give rise to intracellular coated vesicles containing ligand-receptor complexes which are thus internalized. Transferrin, a major serum glycoprotein which transports iron into cells, enters cells by this pathway. It binds to its receptor on the cell surface, transferrin-receptor complexes cluster in coated pits and are internalized in coated vesicles. Coated vesicles then lose their clathrin coat and fuse with endosomes, an organelle with an internal pH of about 5-5.5. Most ligands dissociate from their receptors in endosomes and they finally end up in lysosomes where they are degraded, while their receptors remain bound to membrane structures and recycle to the cell surface. Transferrin has a different fate: in endosomes iron dissociates from transferrin but apotransferrin remains bound to its receptor because of its high affinity for the receptor at acid pH. Apotransferrin thus recycles back to the plasma membrane still bound to its receptor. When the ligand-receptor complex reaches the plasma membrane or a compartment at neutral pH, apotransferrin dissociates from its receptor with a half-life of 18 s because of its low affinity for its receptor at neutral pH. The receptor is then ready for a new cycle of internalization, while apotransferrin enters the circulation, reloads iron in the appropriate organs and is ready for a new cycle of iron transport.  相似文献   

2.
To study the intracellular sorting of internalized ligands and receptors, we examined the pathways of two ligands: transferrin, which is recycled, and alpha 2-macroglobulin (alpha 2M), which is degraded. In CHO cells the two ligands rapidly segregate into different intracellular compartments. Within 5 min fluorescein-labeled transferrin (F-Tf) is found in a large round juxtanuclear structure. Rhodamine-labeled alpha 2M is found in a punctate pattern. Ultra-structural localization studies demonstrate that colloidal gold-alpha 2M is found predominantly in endocytic vesicles, while ferritin-transferrin is found in small vesicles and tubular structures in a region adjacent to the Golgi complex. Using image intensified fluorescence microscopy and digital image analysis, we determined that the F-Tf containing structure has a pH of 6.4 +/- 0.2, while endocytic vesicles containing F-alpha 2M have a pH of 5.4 +/- 0.1. Our study defines a mildly acidic compartment, distinct from endocytic vesicles, that is involved in the recycling of internalized components back to the cell surface.  相似文献   

3.
The rate of movement of different receptors and ligands through the intracellular endocytic apparatus was studied in alveolar macrophages. Cells were exposed to iodinated alpha-macroglobulin-protease complexes, mannose terminal glycoproteins, diferric transferrin, and maleylated proteins. By use of the diaminobenzidine density shift procedure, we demonstrated that these ligands were internalized into the same endocytic vesicle. We then compared the rates of transfer to the lysosome or recycling to the cell surface of different ligands/receptors contained in the same endosome. We found that although the rate constant for degradation was ligand specific, the lag time prior to the initiation of degradation was the same for all three ligands. We also found that molecules taken up nonspecifically by fluid-phase pinocytosis had the same lag time prior to degradation as ligands internalized via receptor-mediated endocytosis. These data suggest that different molecules within the same endocytic compartment are transferred to the lysosome (or degradative compartment) at the same rate. We measured the rate of return of receptors to the cell surface by either inactivating surface receptors by protease treatment at 0 degrees C, or by incubating cells with saturating amounts of nonradioactive ligand at 37 degrees C. We then measured the rate of appearance of "new" receptors on the cell surface. Using these approaches, we found that three different receptors were transferred from internal pools to the cell surface at the same rate. The rate of transfer was independent of whether receptors were initially occupied or unoccupied. Our observations indicate that receptor/ligands, once inside alveolar macrophages, are transported by vesicles which transfer their contents as a cohort from one compartment to another. The rate of movement of these receptors is determined by the movement of vesicles and is independent of their content.  相似文献   

4.
Summary The uptake and pathway of different markers and ligands for fluid-phase, adsorptive and receptor mediated endocytosis were analyzed in the epithelial cells lining the rete testis after their infusion into the lumen of these anastomotic channels. At 2 min after injection, diferric transferrin bound to colloidal gold was seen attached to the apical plasma membrane and to the membrane of endocytic coated and uncoated pits and vesicles. The injection of transferrin-gold in the presence of a 100-fold excess of unconjugated diferric transferrin revealed no binding or internalization of transferrin-gold. Similarly, apotransferrin-gold was neither bound to the apical plasma membrane nor internalized by these cells. These results thus indicate the presence of specific binding sites for diferric transferrin. At 5 min, internalized diferric transferrin-gold reached endosomes. At 15 and 30 min, the endosomes were still labeled but at these time intervals the transferrin-gold also appeared in tubular elements connected to or associated with these bodies or seen in close proximity to the apical plasma membrane. At 60 and 90 min, most of the transferrin-gold was no longer present in these organelles and was seen only exceptionally in secondary lysosomes. These results thus suggest that the tubular elements may be involved in the recycling of transferrin back to the lumen of the rete testis. The coinjection of transferrin-gold and the fluid-phase marker native ferritin revealed that both proteins were often internalized in the same endocytic pit and vesicle and shared the same endosome. However, unlike transferrin, native ferritin at the late time intervals appeared in dense multivesicular bodies and secondary lysosomes. When the adsorptive marker cationic ferritin and the fluid-phase marker albumin-gold were coinjected, again both proteins often shared the same endocytic pit and vesicle, endosome, pale and dense multivesicular body and secondary lysosomes. However, several endocytic vesicles labeled only with cationic ferritin appeared to bypass the endosomal and lysosomal compartments and to reach the lateral intercellular space and areas of the basement membrane. The rete epithelial cells, therefore, appear to be internalizing proteins and ligands by receptor-mediated and non-specific endocytosis which, after having shared the same endocytic vesicle and endosome, appear to be capable of being segregated and routed to different destinations.  相似文献   

5.
Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.  相似文献   

6.
With few exceptions, receptor-mediated endocytosis of specific ligands is mediated through clustering of receptor-ligand complexes in coated pits on the cell surface, followed by internalization of the complex into endocytic vesicles. During this process, ligand-receptor dissociation occurs, most probably in a low pH prelysosomal compartment. In most cases the ligand is ultimately directed to the lysosomes, wherein it is degraded, while the receptor recycles to the cell surface. We have studied the kinetics of internalization and recycling of both the asialoglycoprotein receptor and the transferrin receptor in a human hepatoma cell line. By employing both biochemical and morphological/immunocytochemical approaches, we have gained some insight into the complex mechanisms which govern receptor recycling as well as ligand sorting and targeting. We can, in particular, explain why transferrin is exocytosed intact from the cells, while asialoglycoproteins are degraded in lysosomes. We have also localized the intracellular site at which endocytosed receptor and ligand dissociate.  相似文献   

7.
Earlier studies have shown that immunoglobulin G (IgG)-coated colloidal gold particles bind to specific receptors on the macrophage surface and accumulate in coated pits. They are then internalized via endocytic vesicles and transferred to lysosomes. During this process the plasma membrane is depleted of binding sites for IgG, suggesting that both the receptor and the ligand end up in lysosomes. Here, we have examined the effects of the weak base chloroquine and the Na+-H+ ionophore monensin on endocytosis and intracellular transport of IgG-coated colloidal gold particles in cultured macrophages. The results indicate that chloroquine and monensin do not arrest uptake of IgG-coated particles bound to the cell surface. On the other hand, the drugs strongly inhibit transfer of the particles from endocytic vesicles to lysosomes, the latter marked by prior pulse-chase labeling of the cells with horseradish peroxidase. Since the main effect shared by chloroquine and monensin is to raise pH in acid compartments such as endocytic vesicles and lysosomes, the findings suggest that the transfer of IgG-coated particles into the lysosomes is a pH-dependent process. It remains to be shown whether it is the membrane fusion as such that is controlled by pH or, more specifically, the transfer of receptor-bound ligands into the lysosomes.  相似文献   

8.
We have used electron microscopic immunocytochemistry to compare the distribution of LAMP-1, a marker for lysosomal membranes, with the intracellular localization of alpha 2-macroglobulin (alpha 2-M) and transferrin at various time points after their endocytosis into cultured NIH 3T3 cells. The purposes of this study were (a) to determine how soon endocytic ligands reach lysosomal organelles, (b) to examine whether the intermediate endocytic vesicles gained lysosomal markers gradually or in a precipitous, discrete event, and (c) to examine the relationship, if any, between the pathway of recycling ligands and lysosomes. At early time points (0-5 min) after initiation of endocytosis, most structures containing alpha 2-M labeled with colloidal gold (receptosomes) were not labeled by anti-LAMP-1 detected using ferritin bridge or peroxidase immunocytochemistry. At late time points (greater than or equal to 15 min), the structures containing alpha 2-M (lysosomes) were strongly labeled by anti-LAMP-1. In contrast, transferrin that was directly labeled with ferritin was mostly located in LAMP-1-negative structures at all time points studied. The proportion of alpha 2-M-gold containing vesicles strongly labeled for LAMP-1 roughly paralleled the proportion of alpha 2-M-gold-containing structures positive for cytochemically detectable acid phosphatase. Our data indicate that ligands such as transferrin that are internalized through coated pits and receptosomes, but not delivered to lysosomes, do not traverse a lysosomal organelle compartment as marked by LAMP-1 content. Ligands such as alpha 2-M that are destined for lysosomal delivery reach a LAMP-1-positive organelle compartment only after they traverse LAMP-1-negative, non-lysosomal vesicles previously described as receptosomes.  相似文献   

9.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

10.
The mannose 6-phosphate (Man 6-P) receptor operates to transport both endogenous newly synthesized acid hydrolases and extracellular enzymes to the lysosomal compartment. In a previous study (Gabel, C. A., and S. A. Foster, 1986, J. Cell Biol., 103:1817-1827), we noted that beta-glucuronidase molecules internalized by mouse L-cells via the Man 6-P receptor undergo a proteolytic cleavage and a limited dephosphorylation. In this report, we present evidence that indicates that the postendocytic alterations of the acid hydrolase molecules occur at a site through which the enzymes pass en route to the lysosomal compartment. Mouse L-cells incubated at 20 degrees C with beta-glucuronidase (isolated from mouse macrophage secretions) internalize the enzyme in a process that is inhibited by Man 6-P but unaffected by cycloheximide. As such, the linear accumulation of the ligand observed at 20 degrees C appears to occur through the continued recycling of the cell surface Man 6-P receptor. The subcellular distribution of the internalized ligands was assessed after homogenization of the cells and fractionation of the extracts by density gradient centrifugation. In contrast to the accumulation of the ligand within lysosomes at 37 degrees C, the beta-glucuronidase molecules internalized by the L cells at 20 degrees C accumulate within a population of vesicles that sediment at the same density as endocytic vesicles. Biochemical analysis of the internalized ligands indicates that: (a) the subunit molecular mass of both beta-glucuronidase and beta-galactosidase decrease upon cell association relative to the input form of the enzymes, and (b) the beta-glucuronidase molecules experience a limited dephosphorylation such that high-mannose-type oligosaccharides containing two phosphomonoesters are converted to single phosphomonoester forms. The same two post-endocytic alterations occur after the internalization of beta-glucuronidase by human I-cell disease fibroblasts, despite the low acid hydrolase content of these cells. The results indicate, therefore, that acid hydrolases internalized via the Man 6-P receptor are processed within the endocytic compartment. In that endogenous newly synthesized acid hydrolases display similar alterations during their maturation, the results further suggest that the endosomal compartment is involved in the sorting of ligands transported via both the cell surface and intracellular Man 6-P receptor.  相似文献   

11.
The effects of bafilomycin, nocodazole, and reduced temperature on recycling and the lysosomal pathway have been investigated in various cultured cell lines and have been shown to vary dependent on the cell type examined. However, the way in which these treatments affect recycling and transport to lysosomes within the same cell line has not been analyzed. In the current study, we used fluorophore-labeled transferrin and dextran as typical markers for the recycling and the lysosomal pathways, respectively, to explore the morphology and the intravesicular pH of endocytic compartments in HeLa cells. The V-ATPase inhibitor bafilomycin selectively inhibited the transport of marker destined for lysosomal degradation in early endosomes, whereas the transport of transferrin to the perinuclear recycling compartment (PNRC) still occurred. The kinetics of transferrin acidification was found to be biphasic, indicative of fast and slow recycling pathways via early endosomes (pH 6.0) and PNRC (pH 5.6), respectively. Furthermore, the disruption of microtubules by nocodazole blocked the transport of transferrin to the PNRC in early endosomes and of lysosome-directed marker into endosomal carrier vesicles. In contrast, incubation at 20°C affected the lysosomal pathway by causing retention of internalized dextran in late endosomes and a delay in transferrin recycling. Taken together, these data clearly demonstrate, for the first time, that the transferrin recycling pathway and transport of endocytosed material to lysosomes are differentially affected by bafilomycin, nocodazole, and low temperature in HeLa cells. Consequently, these treatments can be applied to investigate whether internalized macromolecules such as viruses follow a recycling or degradative pathway.This work was supported by grants from the Austrian Science Fund P12967 and P17590 to R.F.  相似文献   

12.
We have previously demonstrated that the preendosomal compartment in addition to clathrin-coated vesicles, comprises distinct nonclathrin coated endocytic vesicles mediating clathrin-independent endocytosis (Hansen, S. H., K. Sandvig, and B. van Deurs. 1991. J. Cell Biol. 113:731-741). Using K+ depletion in HEp-2 cells to block clathrin- dependent but not clathrin-independent endocytosis, we have now traced the intracellular routing of these nonclathrin coated vesicles to see whether molecules internalized by clathrin-independent endocytosis are delivered to a unique compartment or whether they reach the same early and late endosomes as encountered by molecules internalized with high efficiency through clathrin-coated pits and vesicles. We find that Con A-gold internalized by clathrin-independent endocytosis is delivered to endosomes containing transferrin receptors. After incubation of K(+)- depleted cells with Con A-gold for 15 min, approximately 75% of Con A- gold in endosomes is colocalized with transferrin receptors. Endosomes containing only Con A-gold may be accounted for either by depletion of existing endosomes for transferrin receptors or by de novo generation of endosomes. Cationized gold and BSA-gold internalized in K(+)- depleted cells are also delivered to endosomes containing transferrin receptors. h-lamp-1-enriched compartments are only reached occasionally within 30 min in K(+)-depleted as well as in control cells. Thus, preendosomal vesicles generated by clathrin-independent endocytosis do not fuse to any marked degree with late endocytic compartments. These data show that in HEp-2 cells, molecules endocytosed without clathrin are delivered to the same endosomes as reached by transferrin receptors internalized through clathrin-coated pits.  相似文献   

13.
Pretreatment of J774 mouse macrophages by the dicationic macrolide antibiotic, azithromycin (AZ), selectively inhibited fluid-phase endocytosis of horseradish peroxidase and lucifer yellow, but not phagocytosis of latex beads. AZ delayed sequestration of receptor-bound transferrin and peroxidase-anti-peroxidase immune complexes into cell-surface endocytic pits and vesicles, but did not slow down the subsequent rate of receptor-mediated endocytosis. AZ down-regulated cell surface transferrin receptors, but not Fc gamma receptors, by causing a major delay in the accessibility of internalized transferrin receptors to the recycling route, without slowing down subsequent efflux, resulting in redistribution of the surface pool to an intracellular pool. Acidotropic accumulation of AZ was associated with an extensive vacuolation of late endosomes/lysosomes, and these compartments became inaccessible to horseradish peroxidase and immune complexes, but not to latex beads. The inhibitory profile of AZ cannot be solely accounted for by vacuolation and interference with acidification. AZ may help in dissecting various steps of the endocytic apparatus such as lateral mobility of receptors at the plasma membrane, formation of clathrin-independent endocytic vesicles, orientation of transferrin receptors into the recycling route, and fusogenicity with lysosomes.  相似文献   

14.
Sorting endosomes and the endocytic recycling compartment are critical intracellular stores for the rapid recycling of internalized membrane receptors to the cell surface in multiple cell types. However, the molecular mechanisms distinguishing fast receptor recycling from sorting endosomes and slow receptor recycling from the endocytic recycling compartment remain poorly understood. We previously reported that Rab15 differentially regulates transferrin receptor trafficking through sorting endosomes and the endocytic recycling compartment, suggesting a role for distinct Rab15-effector interactions at these endocytic compartments. In this study, we identified the novel protein Rab15 effector protein (REP15) as a binding partner for Rab15-GTP. REP15 is compartment specific, colocalizing with Rab15 and Rab11 on the endocytic recycling compartment but not with Rab15, Rab4, or early endosome antigen 1 on sorting endosomes. REP15 interacts directly with Rab15-GTP but not with Rab5 or Rab11. Consistent with its localization, REP15 overexpression and small interfering RNA-mediated depletion inhibited transferrin receptor recycling from the endocytic recycling compartment, without affecting receptor entry into or recycling from sorting endosomes. Our data identify REP15 as a compartment-specific protein for receptor recycling from the endocytic recycling compartment, highlighting that the rapid and slow modes of transferrin receptor recycling are mechanistically distinct pathways.  相似文献   

15.
Receptor-mediated endocytosis is the most specific pathway for macromolecules and macromolecular complexes generally designated as ligands to enter cells. Upon binding to their transmembrane receptors, the ligands enter endocytic vesicles that fuse with each other giving rise to the so-called early endosomes. The sorting of ligand-receptor complexes internalized in these endosomes depends on their nature: metabolic receptors are recycled back to the plasma membrane, while signaling receptors and their ligands (e.g. receptor tyrosine kinases or receptors associated with tyrosine kinase) are delivered to internal vesicles of the multivesicular late endosomes and finally are degraded after interaction with lysosomes. During these processes, endosomes undergo translocation from the cell periphery to the juxtanuclear region, which is accompanied by multiple fusion, invagination, tabulation, and membrane fission events. This review considers modern concepts of the sorting mechanisms of ligand-receptor complexes, the crosstalk between endosomes, microtubules, and actin, and the role of this crosstalk in endosome maturation.  相似文献   

16.
Small GTPase RhoA regulates signal transduction from receptors in the membrane to a variety of cellular events related to cell morphology, motility, cytoskeletal dynamics, cytokinesis, and tumour progression, but it is unclear how RhoA regulates intracellular membrane dynamics of lysosomes. We showed previously by confocal immunofluorescence microscopy that the transfection of dominant active RhoA in MM1 cells causes the dispersal translocation of lysosomes stained for cathepsin D throughout the cytoplasm. Y-27632, a selective inhibitor of p160ROCK, impeded the cellular redistribution of lysosomes and promoted reclustering of lysosomes toward the perinuclear region. Here we have further investigated whether the acidic lysosomal vesicles dispersed throughout the cytoplasm are applied to the early endosomes in the endocytic pathway, and we demonstrate that the dispersed lysosomes were accessible to endocytosed molecule such as dextran, and their acidity was not changed, as determined by increased accumulation of the acidotropic probe LysoTracker Red. Brefeldin A did not induce the tabulation of these dispersed lysosomes, but it caused early endosomes to form an extensive tubular network. The dispersed lysosomes associated with cathepsin D and LIMPII were not colocalized with early endosomes, and these vesicles were not inaccessible to the endocytosed anti-transferrin receptor antibody. Moreover, wortmannin, an inhibitor of phosphatidylinositol 3-kinase, induced a dramatic change in LIMPII-containing structures in which LIMPII-positive swollen large vacuoles were increased and small punctate structures disappeared in the cytoplasm. These swollen vacuoles were not doubly positive for LIMPII and transferrin receptor, and were not inaccessible to the internalized anti-transferrin receptor antibody. Therefore, our novel findings presented in this paper indicate that RhoA activity causes a selective translocation of lysosomes without perturbing the machinery of endocytic pathway.  相似文献   

17.
Endocytosis and intracellular processing of transferrin (Tf) and Tf receptors were examined in rat reticulocytes. Subcellular fractionation revealed that Tf enters a non-lysosomal endocytic compartment with a density between those of plasma membrane and lysosomes. After 20 min of uptake at (37 degrees C) 35 to 40% of cell-associated Tf was contained in this intermediate-density compartment. To test the fidelity of colloidal gold-Tf (AuTf) as a probe for Tf processing, reticulocytes were fractionated after uptake of 131I-Tf and 125I-AuTf. The subcellular distributions of the two ligands were indistinguishable by this method, a result suggesting that AuTf is processed similarly to Tf. Electron microscopy revealed that AuTf entered multivesicular endosomes (MVEs) as well as various small vesicles and tubular structures. In addition MVE exocytosis was observed with discharge of inclusion vesicles and associated AuTf. AuTf was bound to the outside of these vesicles both before and after exocytosis. These data suggest that Tf receptors are shed from developing reticulocytes by incorporation into the limiting membrane of inclusion vesicles, followed by discharge of these vesicles by MVE exocytosis. As further evidence of this process, we isolated inclusion vesicles after their discharge and found them to contain Tf receptors. Moreover, the rate of Tf receptor shedding by inclusion vesicle discharge matches Tf receptor loss rates closely enough to suggest that this is the primary path of receptor loss during reticulocyte development.  相似文献   

18.
Cholesterol-dependent retention of GPI-anchored proteins in endosomes.   总被引:24,自引:1,他引:23       下载免费PDF全文
S Mayor  S Sabharanjak    F R Maxfield 《The EMBO journal》1998,17(16):4626-4638
Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated uptake (e.g. transferrin) and fluid phase endocytosis (e.g. dextrans). This was confirmed by immunogold electron microscopy and the observation that a fluorescent folate derivative bound to the GPI-anchored folate receptor is internalized into the same compartment as co-internalized horseradish peroxidase-transferrin; the folate fluorescence was quenched when cells subsequently were incubated with diaminobenzidine and H2O2. Most of the GPI-anchored proteins are recycled back to the plasma membrane but at a rate that is at least 3-fold slower than C6-NBD-sphingomyelin or recycling receptors. This endocytic retention is regulated by the level of cholesterol in cell membranes; GPI-anchored proteins are recycled back to the cell surface at the same rate as recycling transferrin receptors and C6-NBD-sphingomyelin in cholesterol-depleted cells. Cholesterol-dependent endocytic sorting of GPI-anchored proteins is consistent with the involvement of specialized lipid domains or 'rafts' in endocytic sorting. These results provide an alternative explanation for GPI-requiring functions of some GPI-anchored proteins.  相似文献   

19.
The putative role of sorting early endosomes (EEs) in synaptic-like microvesicle (SLMV) formation in the neuroendocrine PC12 cell line was investigated by quantitative immunoelectron microscopy. By BSA-gold internalization kinetics, four distinct endosomal subcompartments were distinguished: primary endocytic vesicles, EEs, late endosomes, and lysosomes. As in other cells, EEs consisted of vacuolar and tubulovesicular subdomains. The SLMV marker proteins synaptophysin and vesicle-associated membrane protein 2 (VAMP-2) localized to both the EE vacuoles and associated tubulovesicles. Quantitative analysis showed that the transferrin receptor and SLMV proteins colocalized to a significantly higher degree in primary endocytic vesicles then in EE-associated tubulovesicles. By incubating PC12 cells expressing T antigen-tagged VAMP (VAMP-TAg) with antibodies against the luminal TAg, the recycling pathway of SLMV proteins was directly visualized. At 15 degrees C, internalized VAMP-TAg accumulated in the vacuolar domain of EEs. Upon rewarming to 37 degrees C, the labeling shifted to the tubular part of EEs and to newly formed SLMVs. Our data delineate a pathway in which SLMV proteins together with transferrin receptor are delivered to EEs, where they are sorted into SLMVs and recycling vesicles, respectively.  相似文献   

20.
Y Goda  S R Pfeffer 《FASEB journal》1989,3(13):2488-2495
Proteins bound for the cell surface, lysosomes, and secretory storage granules share a common pathway of intracellular transport. After their synthesis and translocation into the endoplasmic reticulum, these proteins traverse the secretory pathway by a series of vesicular transfers. Similarly, nutrient and signaling molecules enter cells by endocytosis, and move through the endocytic pathway by passage from one membrane-bound compartment to another. Little is known about the mechanisms by which proteins are collected into transport vesicles, or how these vesicles form, identify their targets, and subsequently fuse with their target membranes. An important advance toward our understanding these processes has come from the establishment of cell-free systems that reconstitute vesicular transfers in vitro. It is now possible to measure, in vitro, the transport of proteins from the endoplasmic reticulum to the Golgi, between Golgi cisternae, and the formation of transport vesicles en route from the trans Golgi network to the cell surface. Along the endocytic pathway, cell-free systems are available to study clathrin-coated vesicle formation, early endosome fusion, and the fusion of late endosomes with lysosomes. Moreover, the selective movement of receptors between late endosomes and the trans Golgi network has also been reconstituted. The molecular mechanisms of vesicular transport are now amenable to elucidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号