首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B A Brody  S S Rhee    E Hunter 《Journal of virology》1994,68(7):4620-4627
Viral protease-mediated cleavage within the cytoplasmic domain of the transmembrane (TM) glycoprotein of the type D retrovirus, Mason-Pfizer monkey virus, removes approximately 16 amino acids from the carboxy terminus of the protein. To determine the functional significance of this cleavage in the virus life cycle, we introduced premature stop codons into the TM coding domain, resulting in the production of truncated glycoproteins. Progressive truncated of the cytoplasmic domain identified the carboxy-terminal third as being required for efficient incorporation of the glycoprotein complex into budding virions and profoundly increased the fusogenic capability of the TM glycoprotein. These results, together with the ability of matrix protein mutations to suppress TM cleavage, imply that this portion of the glycoprotein interacts specifically with the capsid proteins during budding, suppressing glycoprotein fusion function until virus maturation has occurred.  相似文献   

2.
E O Freed  D J Myers    R Risser 《Journal of virology》1989,63(11):4670-4675
The envelope glycoproteins of the human immunodeficiency virus (HIV) type 1 are synthesized as a precursor molecule, gp160, which is cleaved to generate the two mature envelope glycoproteins, gp120 and gp41. The cleavage reaction, which is mediated by a host protease, occurs at a sequence highly conserved in retroviral envelope glycoprotein precursors. We have investigated the sequence requirements for this cleavage reaction by introducing four single-amino-acid changes into the glutamic acid-lysine-arginine sequence immediately amino terminal to the site of cleavage. We have also examined the effects of these mutations on the syncytium formation induced by HIV envelope glycoproteins. Our results indicate that a glutamic acid to glycine change at gp120 amino acid 516, a lysine to isoleucine change at amino acid 517, and an arginine to lysine change at amino acid 518 affect neither gp160 cleavage nor syncytium formation. The results obtained with the arginine to lysine change at amino acid 518 differ significantly from the results obtained with the same mutation at the envelope precursor cleavage site of a murine leukemia virus (E. O. Freed, and R. Risser, J. Virol. 61:2852-2856, 1987). An arginine to threonine mutation at gp120 amino acid 518, the terminal residue of gp120, abolishes both gp160 cleavage and syncytium formation. These findings demonstrate that despite its highly conserved nature, the basic pair of amino acids at the site of gp160 cleavage is not absolutely required for proper envelope glycoprotein processing. This report also supports the idea that cleavage of gp160 is required for activation of the HIV envelope fusion function.  相似文献   

3.
We investigated the amino acid sequence requirements for intracellular cleavage of the Rous sarcoma virus glycoprotein precursor by introducing mutations into the region encoding the cleavage recognition site (Arg-Arg-Lys-Arg). In addition to mutants G1 (Arg-Arg-Glu-Arg) and Dr1 (deletion of all four codons) that we have reported on previously (L. G. Perez and E. Hunter, J. Virol. 61:1609-1614, 1987), we constructed two additional mutants, AR1 (Arg-Arg-Arg-Arg), in which the highly conserved lysine is replaced by an arginine, and S19 (Ser-Arg-Glu-Arg), in which no dibasic pairs remain. The results of these studies demonstrate that when the cleavage sequence is deleted (Dr1) or modified to contain unpaired basic residues (S19), intracellular cleavage of the glycoprotein precursor is completely blocked. This demonstrates that the cellular endopeptidase responsible for cleavage has a stringent requirement for the presence of a pair of basic residues (Arg-Arg or Lys-Arg). Furthermore, it implies that the cleavage enzyme is not trypsinlike, since it is unable to recognize arginine residues that are sensitive to trypsin action. Substitution of the mutated genes into a replication-competent avian retrovirus genome showed that cleavage of the glycoprotein precursor was not required for incorporation into virions but was necessary for infectivity. Treatment of BH-RCAN-S19-transfected turkey cells with low levels of trypsin resulted in the release of infectious virus, demonstrating that exogenous cleavage could generate a biologically active glycoprotein molecule.  相似文献   

4.
We recently demonstrated that a single amino acid substitution in matrix residue 12 (12LE) or 30 (30LE) blocks the incorporation of human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins into virions and that this block can be reversed by pseudotyping with heterologous retroviral envelope glycoproteins with short cytoplasmic tails or by truncating the cytoplasmic tail of HIV-1 transmembrane glycoprotein gp41 by 104 or 144 amino acids. In this study, we mapped the domain of the gp41 cytoplasmic tail responsible for the block to incorporation into virions by introducing a series of eight truncation mutations that eliminated 23 to 93 amino acids from the C terminus of gp41. We found that incorporation into virions of a HIV-1 envelope glycoprotein with a deletion of 23, 30, 51, or 56 residues from the C terminus of gp41 is specifically blocked by the 12LE matrix mutation, whereas truncations of greater than 93 amino acids reverse this defect. To elucidate the role of matrix residue 12 in this process, we introduced a number of additional single amino acid substitutions at matrix positions 12 and 13. Charged substitutions at residue 12 blocked envelope incorporation and virus infectivity, whereas more subtle amino acid substitutions resulted in a spectrum of envelope incorporation defects. To characterize further the role of matrix in envelope incorporation into virions, we obtained and analyzed second-site revertants to two different matrix residue 12 mutations. A Val-->Ile substition at matrix amino acid 34 compensated for the effects of both amino acid 12 mutations, suggesting that matrix residues 12 and 34 interact during the incorporation of HIV-1 envelope glycoproteins into nascent virions.  相似文献   

5.
Mason-Pfizer monkey virus (M-PMV) is the prototype type D retrovirus which preassembles immature intracytoplasmic type A particles within the infected cell cytoplasm. Intracytoplasmic type A particles are composed of uncleaved polyprotein precursors which upon release are cleaved by the viral proteinase to their constituent mature proteins. This results in a morphological change in the virion described as maturation. We have investigated the role of the viral proteinase in virus maturation and infectivity by inhibiting the function of the enzyme through mutagenesis of the proteinase gene and by using peptide inhibitors originally designed to block human immunodeficiency virus type 1 proteinase activity. Mutation of the active-site aspartic acid, Asp-26, to asparagine abrogated the activity of the M-PMV proteinase but did not affect the assembly of noninfectious, immature virus particles. In mutant virions, the transmembrane glycoprotein (TM) of M-PMV, initially synthesized as a cell-associated gp22, is not cleaved to gp20, as is observed with wild-type virions. This demonstrates that the viral proteinase is responsible for this cleavage event. Hydroxyethylene isostere human immunodeficiency virus type 1 proteinase inhibitors were shown to block M-PMV proteinase cleavage of the TM glycoprotein and Gag-containing precursors in a dose-dependent manner. The TM cleavage event was more sensitive than cleavage of the Gag precursors to inhibition. The infectivity of treated particles was reduced significantly, but experiments showed that inhibition of precursor and TM cleavage may be at least partially reversible. These results demonstrate that the M-PMV aspartyl proteinase is activated in released virions and that the hydroxyethylene isostere proteinase inhibitors used in this study exhibit a broad spectrum of antiretroviral activity.  相似文献   

6.
Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.  相似文献   

7.
Mason-Pfizer monkey virus (M-PMV) encodes a transmembrane (TM) glycoprotein with a 38-amino-acid-long cytoplasmic domain. After the release of the immature virus, a viral protease-mediated cleavage occurs within the cytoplasmic domain, resulting in the loss of 17 amino acids from the carboxy terminus. This maturational cleavage occurs between a histidine at position 21 and a tyrosine at position 22 in the cytoplasmic domain of the TM protein. We have demonstrated previously that a truncated TM glycoprotein with a 21-amino-acid-long cytoplasmic tail showed enhanced fusogenicity but could not be incorporated into virions. These results suggest that postassembly cleavage of the cytoplasmic domain removes a necessary incorporation signal and activates fusion activity. To investigate the contribution of tyrosine residues to the function of the glycoprotein complex and virus replication, we have introduced amino acid substitutions into two tyrosine residues found in the cytoplasmic domain. The effects of these mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of tyrosine 34 to alanine had little effect on glycoprotein function. In contrast, substitutions at tyrosine 22 modulated fusion activity in either a positive or negative manner, depending on the substituting amino acid. Moreover, any nonaromatic substitution at this position blocked glycoprotein incorporation into virions and abolished infectivity. These results demonstrate that M-PMV employs a tyrosine signal for the selective incorporation of glycoprotein into budding virions. Antibody uptake studies show that tyrosine 22 is part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein that can also be positively and negatively influenced by changes at this site.  相似文献   

8.
The transmembrane (TM) glycoprotein gp41 of human immunodeficiency virus type 1 possesses an unusually long ( approximately 150 amino acids) and highly conserved cytoplasmic region. Previous studies in which this cytoplasmic tail had been deleted partially or entirely have suggested that it is important for virus infectivity and incorporation of the gp120-gp41 glycoprotein complex into virions. To determine which regions of the conserved C-terminal domains are important for glycoprotein incorporation and infectivity, several small deletions and amino acid substitutions which modify highly conserved motifs were constructed in the infectious proviral background of NL4.3. The effects of these mutations on infectivity and glycoprotein incorporation into virions produced from transfected 293-T cells and infected H9 and CEMx174 cells were determined. With the exception of a mutation deleting amino acids QGL, all of the constructs resulted in decreased infectivity of the progeny virus both in a single-round infectivity assay and in a multiple-infection assay in H9 and CEMx174 cells. For most mutations, the decreased infectivity was correlated with a decreased incorporation of glycoprotein into virions. Substitution of the arginines (residues 839 and 846) with glutamates also reduced infectivity, but without a noticeable decrease in the amount of glycoprotein incorporated into virus produced from infected T cells. These results demonstrate that minor alterations in the conserved C-terminal region of the gp41 cytoplasmic tail can result in reductions in infectivity that correlate for most but not all constructs with a decrease in glycoprotein incorporation. Observed cell-dependent differences suggest the involvement of cellular factors in regulating glycoprotein incorporation and infectivity.  相似文献   

9.
Proteolytic processing is required for the activation of numerous viral glycoproteins. Here we show that the envelope glycoprotein from the Zaire strain of Ebola virus (Ebo-GP) is proteolytically processed into two subunits, GP1 and GP2, that are likely covalently associated through a disulfide linkage. Murine leukemia virions pseudotyped with Ebo-GP contain almost exclusively processed glycoprotein, indicating that this is the mature form of Ebo-GP. Mutational analysis identified a dibasic motif, reminiscent of furin-like protease processing sites, as the Ebo-GP cleavage site. However, analysis of Ebo-GP processing in LoVo cells that lack the proprotein convertase furin demonstrated that furin is not required for processing of Ebo-GP. In sharp contrast to other viral systems, we found that an uncleaved mutant of Ebo-GP was able to mediate infection of various cell lines as efficiently as the wild-type, proteolytically cleaved glycoprotein, indicating that cleavage is not required for the activation of Ebo-GP despite the conservation of a dibasic cleavage site in all filoviral envelope glycoproteins.  相似文献   

10.
The Lassa virus glycoprotein consists of an amino-terminal and a carboxy-terminal cleavage fragment designated GP-1 and GP-2, respectively, that are derived by proteolysis from the precursor GP-C. The membrane-anchored GP-2 obtained from purified virions of the Josiah strain revealed the N-terminal tripeptide GTF(262) when analyzed by Edman degradation. Upstream of this site, GP-C contains the tetrapeptide sequence RRLL(259), which is conserved in all Lassa virus isolates published to date. Systematic mutational analysis of vector-expressed GP-C revealed that the motif R-X (L/I/V)-L(259) (where X stands for L, I, or V) is essential for cleavage of the peptide bond between leucine(259) and glycine(260). This cleavage motif is homologous to the consensus sequence recognized by a novel class of cellular endoproteases which have so far not been implicated in the processing of viral glycoproteins.  相似文献   

11.
We have identified mutations in the human immunodeficiency virus type 1 (HIV-1) matrix protein (MA) which block infectivity of virions pseudotyped with murine leukemia virus (MuLV) envelope (Env) glycoproteins without affecting infectivity conferred by HIV-1 Env or vesicular stomatitis virus G glycoproteins. This inhibition is very potent and displays a strong transdominant effect; infectivity is reduced more than 100-fold when wild-type and mutant molecular clones are cotransfected at a 1:1 ratio. This phenomenon is observed with both ecotropic and amphotropic MuLV Env. The MA mutations do not affect the incorporation of MuLV Env into virions. We demonstrate that in HIV-1 virions pseudotyped with MuLV Env, the HIV-1 protease (PR) efficiently catalyzes the cleavage of the p15(E) transmembrane (TM) protein to p12(E). Immunoprecipitation analysis of pseudotyped virions reveals that the mutant MA blocks this HIV-1 PR-mediated cleavage of MuLV TM. Furthermore, the transdominant inhibition exerted by the mutant MA on wild-type infectivity correlates with the relative level of p15(E) cleavage. Consistent with the hypothesis that abrogation of infectivity imposed by the mutant MA is due to inhibition of p15(E) cleavage, mutant virions are significantly more infectious when pseudotyped with a truncated p12(E) form of MuLV Env. These results indicate that HIV-1 Gag sequences can influence the viral PR-mediated processing of the MuLV TM Env protein p15(E). These findings have implications for the development of HIV-1-based retroviral vectors pseudotyped with MuLV Env, since p15(E) cleavage is essential for activating membrane fusion and virus infectivity.  相似文献   

12.
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.  相似文献   

13.
It is thought that complete cleavage of retroviral envelope protein into mature surface protein (SU) and transmembrane protein (TM) is critical for its assembly into virions and the formation of infectious virus particles. Here we report the identification of highly infectious, cleavage-deficient envelope mutant proteins. Substitution of aspartate for lysine 104, arginines 124 and 126, or arginines 223 and 225 strongly suppressed cleavage of the envelope precursor and yet allowed efficient incorporation of precursor molecules as the predominant species in virions that were almost as infectious as the wild-type virus. These results indicate that cleavage of the envelope precursor into mature SU and TM is not necessary for assembly into virions. Moreover, they call into question how many mature envelope protein subunits are required to complete virus entry, suggesting that a very few molecules suffice. The failure of host cell proteases to cleave these mutant proteins, whose substitutions are distal to the actual site of cleavage, suggests that the envelope precursor is misfolded, sequestering the cleavage site. In agreement with this, all cleavage mutant proteins exhibited significant losses of receptor binding, suggesting that these residues play roles in proper envelope protein folding. We also identified a charged residue, arginine 102, whose substitution suppressed envelope cleavage and allowed precursor incorporation but resulted in virions that were virtually noninfectious and that exhibited the greatest reduction in receptor binding. Placement of these cleavage mutations into envelope proteins of targeted retroviral vectors for human gene therapy may prevent loss of the modified surface proteins from virions, improving their infectivity and storage hardiness.  相似文献   

14.
The precursor of platelet membrane glycoprotein IIb (GPIIb) undergoes endoproteolytic cleavage into heavy and light chains post-translation. Endoproteolysis occurs within a 17-amino acid stretch of the precursor that contains 4 arginine residues, 3 in dibasic sequences [Lys-Arg (855-856) and Arg-Arg (858-859)] and a single arginine at 871. To determine the site of GPIIb cleavage and its role in the function of the glycoprotein IIb/IIIa heterodimer, we mutated arginine 856, the di-arginine sequence 858-859, and arginine 871 and coexpressed the mutants with glycoprotein IIIa (GPIIIa) in COS-1 cells. Each GPIIb mutant formed recombinant GPIIb-IIIa heterodimers, but mutants lacking arginine at 856 or 858-859 failed to undergo cleavage. Nevertheless, heterodimers containing the uncleaved GPIIb were expressed on the cell surface. Because endoproteolysis most often occurs after arginines in dibasic sequences, we next expressed GPIIb mutants containing lysine at 856 or aspartic acid at 855 with GPIIIa. Both mutants were cleaved and surface-expressed, indicating that the dibasic sequence at 858-859, but not at 855-856, is required for GPIIb cleavage. Lastly, we tested the function of GPIIb-IIIa containing uncleaved GPIIb by measuring adhesion of transfected cells to immobilized fibrinogen. We found no difference in the adhesion of cells expressing either wild-type or mutant GPIIb, indicating GPIIb-IIIa heterodimers containing uncleaved GPIIb maintain their ability to interact with fibrinogen.  相似文献   

15.
The entry of enveloped viruses into its host cells is a crucial step for the propagation of viral infection. The envelope glycoprotein complex controls viral tropism and promotes the membrane fusion process. The surface glycoproteins of enveloped viruses are synthesized as inactive precursors and sorted through the constitutive secretory pathway of the infected cells. To be infectious, most of the viruses require viral envelope glycoprotein maturation by host cell endoproteases. In spite of the strong variability of primary sequences observed within different viral envelope glycoproteins, the endoproteolytical cleavage occurs mainly in a highly conserved domain at the carboxy terminus of the basic consensus sequence (Arg-X-Lys/Arg-Arg downward arrow). The same consensus sequence is recognized by the kexin/subtilisin-like serine proteinases (so called convertases) in many cellular substrates such as prohormones, proprotein of receptors, plasma proteins, growth factors and bacterial toxins. Therefore, several groups of investigators have evaluated the implication of convertases in viral envelope glycoprotein cleavage. Using the vaccinia virus overexpression system, furin was first shown to mediate the proteolytic maturation of both human immunodeficiency virus (HIV-1) and influenza virus envelope glycoproteins. In vitro studies demonstrated that purified convertases directly and specifically cleave viral envelope glycoproteins. Although these studies suggested the participation of several enzymes belonging to the convertases family, recent data suggest that other protease families may also participate in the HIV envelope glycoprotein processing. Their role in the physiological maturation process is still hypothetical and the molecular mechanism of the cleavage is not well documented. Crystallization of the hemagglutinin precursor (HA0) of influenza virus allowed further understanding of the molecular interaction between viral precursors and the cellular endoproteases. Furthermore, relationships between differential pathogenicity of influenza strains and their susceptibility to cleavage are molecularly funded. Here we review the most recent data and recent insights demonstrating the crucial role played by this activation step in virus infectivity. We discuss the cellular endoproteases that are implicated in HIV gp160 endoproteolytical maturation into gp120 and gp41.  相似文献   

16.
Assembly of an infectious retrovirus requires the incorporation of the envelope glycoprotein complex during the process of particle budding. We have recently demonstrated that amino acid substitutions of a tyrosine residue in the cytoplasmic domain block glycoprotein incorporation into budding Mason-Pfizer monkey virus (M-PMV) particles and abrogate infectivity (C. Song, S. R. Dubay, and E. Hunter, J. Virol. 77:5192-5200, 2003). To investigate the contribution of other amino acids in the cytoplasmic domain to the process of glycoprotein incorporation, we introduced alanine-scanning mutations into this region of the transmembrane protein. The effects of the mutations on glycoprotein biosynthesis and function, as well as on virus infectivity, have been examined. Mutation of two cytoplasmic residues, valine 20 and histidine 21, inhibits viral protease-mediated cleavage of the cytoplasmic domain that is observed during virion maturation, but the mutant virions show only moderately reduced infectivity. We also demonstrate that the cytoplasmic domain of the M-PMV contains three amino acid residues that are absolutely essential for incorporation of glycoprotein into virions. In addition to the previously identified tyrosine at residue 22, an isoleucine at position 18 and a leucine at position 25 each mediate the process of incorporation and efficient release of virions. While isoleucine 18 may be involved in direct interactions with immature capsids, antibody uptake studies showed that leucine 25 and tyrosine 22 are part of an efficient internalization signal in the cytoplasmic domain of the M-PMV glycoprotein. These results demonstrate that the cytoplasmic domain of M-PMV Env, in part through its YXXL-mediated endocytosis and intracellular trafficking signals, plays a critical role in the incorporation of glycoprotein into virions.  相似文献   

17.
Human immunodeficiency virus type 1 contains a transmembrane glycoprotein with an unusually long cytoplasmic domain. To determine the role of this domain in virus replication, a series of single nucleotide changes that result in the insertion of premature termination codons throughout the cytoplasmic domain has been constructed. These mutations delete from 6 to 192 amino acids from the carboxy terminus of gp41 and do not affect the amino acid sequence of the regulatory proteins encoded by rev and tat. The effects of these mutations on glycoprotein biosynthesis and function as well as on virus infectivity have been examined in the context of a glycoprotein expression vector and the viral genome. All of the mutant glycoproteins were synthesized, processed, and transported to the cell surface in a manner similar to that of the wild-type glycoprotein. With the exception of mutants that remove the membrane anchor domain, all of the mutant glycoproteins retained the ability to cause fusion of CD4-bearing cells. However, deletion of more than 19 amino acids from the C terminus of gp41 blocked the ability of mutant virions to infect cells. This defect in virus infectivity appeared to be due at least in part to a failure of the virus to efficiently incorporate the truncated glycoprotein. Similar data were obtained for mutations in two different env genes and two different target cell lines. These results indicate that the cytoplasmic domain of gp41 plays a critical role during virus assembly and entry in the life cycle of human immunodeficiency virus type 1.  相似文献   

18.
The matrix (MA) protein of the simian immunodeficiency viruses (SIVs) is encoded by the amino-terminal region of the Gag precursor and is the component of the viral capsid that lines the inner surface of the virus envelope. Previously, we identified domains in the SIV MA that are involved in the transport of Gag to the plasma membrane and in particle assembly. In this study, we characterized the role in the SIV life cycle of highly conserved residues within the SIV MA region spanning the two N-terminal alpha-helices H1 and H2. Our analyses identified two classes of MA mutants: (i) viruses encoding amino acid substitutions within alpha-helices H1 or H2 that were defective in envelope (Env) glycoprotein incorporation and exhibited impaired infectivity and (ii) viruses harboring mutations in the beta-turn connecting helices H1 and H2 that were more infectious than the wild-type virus and displayed an enhanced ability to incorporate the Env glycoprotein. Remarkably, among the latter group of MA mutants, the R22L/G24L double amino acid substitution increased virus infectivity eightfold relative to the wild-type virus in single-cycle infectivity assays, an effect that correlated with a similar increase in Env incorporation. Furthermore, the R22L/G24L MA mutation partially or fully complemented single-point MA mutations that severely impair or block Env incorporation and virus infectivity. Our finding that the incorporation of the Env glycoprotein into virions can be upregulated by specific mutations within the SIV MA amino terminus strongly supports the notion that the SIV MA domain mediates Gag-Env association during particle formation.  相似文献   

19.
According to the existing model of flavivirus polyprotein processing, one of the cleavages in the amino-terminal part of the flavivirus polyprotein by host cell signalases results in formation of prM (precursor to one of the structural proteins, M) and the membrane-bound intracellular form of the viral capsid protein (Cint) retaining the prM signal sequence at its carboxy terminus. This hydrophobic anchor is subsequently removed by the viral protease, resulting in formation of the mature viral capsid protein found in virions (Cvir). We have prepared in vitro expression cassettes coding for both forms of the capsid protein, for the prM protein, for the C-prM precursor, and for the viral protease components of West Nile flavivirus and characterized their translation products. Using Cint and Cvir translation products as molecular markers, we have observed processing of the intracellular form of the West Nile capsid protein by the viral protease in vitro both upon cotranslation of the C-prM precursor and the viral protease-encoding cassette and by incubation of C-prM translation products with a detergent-solubilized extract of cells infected with a recombinant vaccinia virus expressing the active viral protease. The cleavage of Cint by the viral protease at the predicted dibasic site was verified by introduction of point mutations into the cleavage site and an adjacent region. These studies provide the first direct demonstration of processing of the intracellular form of the flavivirus capsid protein by the viral protease.  相似文献   

20.
The role of the cytoplasmic domain of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins in virus replication was investigated. Deletion of residues 840 to 856 at the carboxyl terminus of gp41 reduced the efficiency of virus entry during an early step in the virus life cycle between CD4 binding and formation of the DNA provirus without affecting envelope glycoprotein synthesis, processing, or syncytium-forming ability. Deletion of residues amino terminal to residue 846 was associated with decreased stability of envelope glycoproteins made in COS-1 cells, but this phenotype was cell type dependent. The cytoplasmic domain of gp41 was not required for the incorporation of the HIV-1 envelope glycoproteins into virions. These results suggest that the carboxyl terminus of the gp41 cytoplasmic domain plays a role in HIV-1 entry other than receptor binding or membrane fusion. The cytoplasmic domain of gp41 also affects the stability of the envelope glycoprotein in some cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号