首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
The venom of the South American snake Bothrops jararaca contains two serine proteinases, bothrombin and the platelet-aggregating enzyme PA-BJ, which share 66% sequence identity. Each of these proteinases possesses one of the two essential procoagulant functions of thrombin-the clotting of fibrinogen and platelet aggregation. Thus, bothrombin clots fibrinogen but has no direct effect on platelets, unless in the presence of exogenous fibrinogen. PA-BJ induces platelet aggregation by interacting with the protease-activated platelet receptor without clotting fibrinogen. On the other hand, thrombin possesses two extended surfaces. One is composed of basic and hydrophobic residues (exosite I) and the other one of basic residues only (exosite II). These exosites are involved in the recognition of physiological macromolecular substrates. In order to identify the corresponding exosites in bothrombin and PA-BJ and understand the molecular basis of the partition of the two procoagulant functions of thrombin among the two snake venom enzymes, we used molecular modeling to obtain models of their complexes with their natural substrates fibrinogen and a fragment of the protease-activated platelet receptor, respectively. In analogy to thrombin, each of the enzymes presents two exosites. Nonetheless, the exosites contain a smaller proportion of basic residues than thrombin does (45-72%), reducing thus the functional diversity of the enzymes. In addition, the composition of exosite I is different in both enzymes. We identify those residues in exosite I that could contribute to the differences in specificity. Finally, allostery does not seem to mediate macromolecular substrate recognition by these enzymes.  相似文献   

2.
The Egyptian Sand Viper (Cerastes cerastes) crude venom and subfractions were, for the first time, shown to induce platelet aggregation with agonist activities present in two subfractions. The combined activities of the crude venom components behaved in a unique fashion as compared to the platelet agonists, ADP, collagen and thrombin. The action of the venom was inhibited by conditions that increased cAMP, partially required the formation of thromboxane A2 and was inhibited by the serine protease inhibitor PMSF while being only partially sensitive to leupeptin or soybean trypsin inhibitor. One of the fractionated venom agonists strongly induced serotonin release while the other venom agonist essentially did not. Further characterization of the Cerastes cerastes venom components should broaden our knowledge of the pathology of snake venoms, platelet aggregation and their potential therapeutic value.  相似文献   

3.
Platelet aggregation inducer and inhibitor were isolated from Echis carinatus snake venom. The venom inducer caused aggregation of washed rabbit platelets which could be inhibited completely by heparin or hirudin. The venom inducer also inhibit both the reversibility of platelet aggregation induced by ADP and the disaggregating effect of prostaglandin E1 on the aggregation induced by collagen in the presence of heparin. The venom inhibitor decreased the platelet aggregation induced by collagen, thrombin, ionophore A23187, arachidonate, ADP and platelet-activating factor (PAF) with an IC50 of around 10 μg/ml. It did not inhibit the agglutination of formaldehyde-treated platelets induced by polylysine. In the presence of indomethacin or in ADP-refractory platelets or thrombin-degranulated platelets, the venom inhibitor further inhibited the collagen-induced aggregation. Fibrinogen antagonized competitively the inhibitory action of the venom inhibitor in collagen-induced aggregation. In chymotrypsin-treated platelets, the venom inhibitor abolished the aggregation induced by fibrinogen. It was concluded that the venom inducer caused platelet aggregation indirectly by the conversion of prothrombin to thrombin, while the venom inhibitor inhibited platelet aggregation by interfering with the interaction between fibrinogen and platelets.  相似文献   

4.
Pit viper venoms contain a number of serine proteinases that exhibit one or more thrombin-like activities on fibrinogen and platelets, this being the case for the kinin-releasing and fibrinogen-clotting KN-BJ from the venom of Bothrops jararaca. A three-dimensional structural model of the KN-BJ2 serine proteinase was built by homology modeling using the snake venom plasminogen activator TSV-PA as a major template and porcine kallikrein as additional structural support. A set of intrinsic buried waters was included in the model and its behavior under dynamic conditions was molecular dynamics simulated, revealing a most interesting similarity pattern to kallikrein. The benzamidine-based thrombin inhibitors alpha-NAPAP, 3-TAPAP, and 4-TAPAP were docked into the refined model, allowing for a more insightful functional characterization of the enzyme and a better understanding of the reported comparatively low affinity of KN-BJ2 toward those inhibitors.  相似文献   

5.
An antiplatelet peptide, gabonin, from Bitis gabonica snake venom.   总被引:2,自引:0,他引:2  
Interaction of fibrinogen with its receptors (glycoprotein IIb/IIIa complex) on platelet membranes leads to platelet aggregation. By means of gel filtration, CM-Sephadex C-50, and reverse-phase HPLC, an antiplatelet peptide, gabonin, was purified from the venom of Bitis gabonica. The purified protein migrates as a 21,100-Da polypeptide on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions and as a 11,000-Da peptide in the presence of beta-mercaptoethanol, indicating that gabonin is a disulfide-linked dimer. It is a polypeptide consisting of about 84 amino acid residues, rich in Asp, Pro, and half-cystine. Gabonin dose-dependently inhibited human platelet aggregation stimulated by ADP, collagen, U46619, or thrombin in preparations of platelet-rich plasma and platelet suspension (IC50 = 340-1600 nM). It also blocked platelet aggregation of whole blood. However, it apparently did not affect the initial shape change and only slightly reduced ATP release caused by aggregation agonists. Gabonin did not inhibit the rise of cytosolic calcium in Quin-2-loaded platelets stimulated by thrombin. In addition, gabonin dose-dependently inhibited fibrinogen-induced aggregation of elastase-treated platelets. In conclusion, gabonin inhibits platelet aggregation mainly through the blockade of fibrinogen binding toward fibrinogen receptors of the activated platelets.  相似文献   

6.
Snake venoms contain serine proteinases that are functionally similar to thrombin and specifically cleave fibrinogen to convert it into fibrin or activate platelets to aggregation. PA-BJ is a serine proteinase from Bothrops jararaca venom that promotes platelet aggregation and this effect is mediated by the G-coupled protein receptors PAR1 and PAR4. In this study we describe an improved procedure to obtain PA-BJ from B. jararaca venom that uses less chromatographic steps, and, interestingly, results in the isolation of eight proteoforms showing slightly different pIs and molecular masses due to variations in their glycosylation levels. The identity of the isolated PA-BJ forms (1–8) was confirmed by mass spectrometry, and they showed similar platelet-activating activity on washed platelet suspensions. N- and O-deglycosylation of PA-BJ 1–8 under denaturing conditions generated variable electrophoretic profiles and showed that some forms were resistant to complete deglycosylation. Furthermore, N- and O-deglycosylation under non-denaturing conditions also showed different electrophoretic profiles between the PA-BJ forms and caused partial loss of their ability to cleave a recombinant exodomain of PAR1 receptor. In parallel, three cDNAs encoding PA-BJ-like enzymes were identified by pyrosequencing of a B. jararaca venom gland library constructed with RNA from a single specimen. Taken together, our results suggest that PA-BJ occurs in the B. jararaca venom in multiple proteoforms displaying similar properties upon platelets regardless of their variable isoelectric points, molecular masses, carbohydrate moieties and susceptibility to the activity of glycosidases, and highlight that variability of specific venom components contributes to venom proteome complexity.  相似文献   

7.
The venom of Bothrops asper induces severe coagulation disturbances in accidentally envenomed humans. However, only few studies have been conducted to identify components that interact with the hemostatic system in this venom. In the present work, we fractionated B. asper venom in order to investigate the possible presence of inhibitors of platelet aggregation. Using a combination of gel filtration, anion-exchange chromatography, and reverse-phase high performance liquid chromatography, we isolated an acidic protein which shows a single chain composition, with a molecular mass of approximately 8 kDa, estimated by SDS-polyacrylamide gel electrophoresis. Its N-terminal sequence has high similarity to disintegrins isolated from different snake venoms, which are known to bind to cellular integrins such as the GPIIb/IIIa fibrinogen receptor on platelets. The purified protein exerted potent aggregation inhibitory activity on ADP-stimulated human platelets in vitro, with an estimated IC50 of 50 nM. This biological activity, together with the biochemical characteristics observed, demonstrate that the protein isolated from B. asper venom is a disintegrin, hereby named "bothrasperin". This is the first disintegrin isolated from Central American viperid snake species.  相似文献   

8.
A plasminogen activator enzyme (LV-PA) from Lachesis muta muta venom was purified to homogeneity using gel filtration and anion exchange chromatography. SDS-PAGE under reducing conditions showed a single protein band with an Mr of 33,000 Da. It is an acidic glycoprotein which activates plasminogen to plasmin indirectly, functioning via prior formation of a molecular complex, known as plasminogen activator. The purified preparation catalyzes the hydrolysis of several p-nitroanilide peptide substrates containing Lys at the scissile bond. In contrast, no hydrolysis was detected on the synthetic substrates TAME and BAPNA, which contain arginine. By the use of the plasmin-specific chromogenic substrate Tos-Gly-Pro-Lys-pNA, the preparation had a plasmin-like activity of 0.68 U/mg, which was 35.8-fold higher than that of the crude venom from which it was prepared. In vitro, fibrin hydrolysis using LV-PA as plasminogen activator displayed more similarity with the effect produced by streptokinase (SK). SDS-PAGE (10%) analysis showed a 115-kDa complex formation after incubation of plasminogen with either LV-PA or SK. At a molar ratio of 50:1 (fibrinogen:enzyme), the preparation exhibited weakly fibrinogenolytic activity. However, LV-PA is distinguished from thrombin in that it does not clot fibrinogen. After incubation of LV-PA with platelet-rich plasma, the enzyme (2 microM) showed no effect on platelet aggregation induced by ADP, epinephrine, or collagen. Comparison of the N-terminal sequence of LV-PA with other snake venom plasminogen activators revealed that LV-PA exhibits a high degree of sequence identity with the TsVPA from Trimeresurus stejnegeri (90%) and with the Haly-PA from Agkistrodon halys (85%). LV-PA also has homology with other snake venom serine proteinases such as the thrombin-like/gyroxin analogue (38%) from bushmaster venom and with other coagulation serine proteases. The proteinase was readily inhibited by treatment with p-nitrophenyl p-guanidinebenzoate, p-aminobenzamidine, and phenylmethanesulfonyl fluoride but was not affected by metal chelators.  相似文献   

9.
Determination of the nucleotide sequence of a cDNA for batroxobin, a thrombin-like enzyme from Bothrops atrox, moojeni venom, allowed elucidation of the complete amino acid sequence of batroxobin for the first time for a thrombin-like snake venom enzyme. The molecular weight of batroxobin is 25,503 (231 amino acids). The amino acid sequence of batroxobin exhibits significant homology with those of mammalian serine proteases (trypsin, pancreatic kallikrein, and thrombin), indicating that batroxobin is a member of the serine protease family. Based on this homology and enzymatic and chemical studies, the catalytic residues and disulfide bridges of batroxobin were deduced to be as follows: catalytic residues, His41, Asp86, and Ser178; and disulfide bridges, Cys7-Cys139, Cys26-Cys42, Cys74-Cys230, Cys118-Cys184, Cys150-Cys163, and Cys174-Cys199. The amino-terminal amino acid residue of batroxobin, valine, is preceded by 24 amino acids. This may indicate that the amino-terminal hydrophobic peptide (18 amino acids) is a prepeptide and that the hydrophilic peptide (6 amino acids), preceded by the putative prepeptide, is a propeptide.  相似文献   

10.
Snake venom serine proteinases (SVSPs) may affect hemostatic pathways by specifically activating components involved in coagulation, fibrinolysis and platelet aggregation or by unspecific proteolytic degradation. In this study, we purified and characterized an SVSP from Bothrops cotiara venom, named cotiarinase, which generated thrombin upon incubation with prothrombin. Cotiarinase was isolated by a two-step procedure including gel-filtration and cation-exchange chromatographies and showed a single protein band with a molecular mass of 29 kDa by SDS-polyacrylamide gel electrophoresis under reducing conditions. Identification of cotiarinase by mass spectrometric analysis revealed peptides that matched sequences of viperid SVSPs. Cotiarinase did not show fibrinogen-clotting, platelet-aggregating, fibrinogenolytic and factor X activating activities. Upon incubation with prothrombin the generation of thrombin was detected using the peptide substrate d-Phe-Pip-Arg-pNA. Moreover, mass spectrometric identification of prothrombin fragments generated by cotiarinase in the absence of co-factors (phospholipids, factor Va, factor Xa and Ca2+ ions), indicated the limited proteolysis of this protein to release prothrombin 1, fragment 1 and thrombin. Cotiarinase is a novel SVSP that acts on prothrombin to release active thrombin that does not match any group of the current classification of snake venom prothrombin activators.  相似文献   

11.
Thrombocytin, a serine protease from Bothrops atrox venom, caused platelet aggregation and release of platelet constituents at a concentration of 10(-7) M and clot retraction at a concentration of 2 x 10(-9) M. Thrombocytin was slightly more active when tested on platelets in plasma than on washed platelets suspended in Tyrode--albumin solution. Thrombin was 5 times more active than thrombocytin when tested on platelets in plasma and 50 times more active when tested on washed platelets. The patterns or release induced by thrombocytin and thrombin were similar. Prostaglandin E1 (10(-5) M) produced complete inhibition of platelet release induced by thrombocytin and thrombin. Indomethacin (10(-4) M) was without any effect. Antithrombin III, in the presence of heparin, inhibited the action of thrombocytin on platelets and on a synthetic peptide substrate (Tos-Gly-Pro-Arg-pNA.HCl). formation of an antithrombin III--thrombocytin complex was demonstrated on NaDodSO4--polyacrylamide gel electrophoresis. Hirudin and alpha 1-antitrypsin did not inactivate thrombocytin. Thrombocytin had a low fibrinogen-clotting activity (less than 0.06% that of thrombin). Thrombocytin also caused progressive degradation of the alpha chain of human fibrinogen, and it cleaved prothrombin, releasing products similar to intermediate 1 and fragment 1 produced by thrombin. Thrombocytin activated factor XIII by limited proteolysis and increased the procoagulant activity of factor VIII in a manner analogous to that of thrombin.  相似文献   

12.
To elucidate the thrombin domains required for high-affinity binding and platelet activation, the platelet binding properties of thrombin and two mutant thrombins, thrombin Quick I and Quick II, were compared to their agonist effects in elevating intraplatelet [Ca2+]. In Quick I, a mutation within the fibrinogen binding groove results in decreased clotting and platelet aggregating activities, whereas in Quick II, a mutation in the primary substrate binding pocket abolishes both activities. Dysthrombin binding was decreased compared to thrombin. The fibrinogen binding groove appeared more important than the primary substrate pocket for high-affinity binding since Quick I showed drastically reduced, and Quick II only slightly reduced, binding affinity (Kd approximately 200 and approximately 10 nM, respectively). The deduced interaction of thrombin with its high-affinity binding site indicated that the thrombin catalytic site is directed toward the platelet surface and therefore, when bound, is proteolytically inactive. Quick I (0.5-5 nM) elicited intraplatelet [Ca2+] fluxes at concentrations where high-affinity binding was undetectable. Saturation of high-affinity binding sites with active-site-modified thrombin did not affect thrombin-induced (0.5 nM) or Quick I-induced (5 nM) responses. In contrast, addition of D-Phe-Pro-Arg chloromethyl ketone (FPRCK) subsequent to thrombin or Quick I stimulation of platelets abolished agonist-induced responses. Since Quick I was only 10-17% as effective as thrombin in increasing intraplatelet [Ca2+], our data support a model in which thrombin acts enzymatically on a platelet membrane "substrate", through an interaction mediated in part by the fibrinogen binding groove of thrombin. This conclusion is consistent with the inhibition observed with high concentrations (greater than 100 nM) of Quick II and FPRCK-modified thrombin (FPR-thrombin) in platelets stimulated with low concentrations of thrombin (less than 0.5 nM) or Quick I (less than 2 nM), consistent with inhibition by substrate depletion. In contrast, concentrations of FPR-thrombin or Quick II (less than 100 nM), which saturated predominantly the high-affinity binding sites, enhanced the platelet responses induced by thrombin (less than 0.5 nM). Thus, occupation of the high-affinity sites with inactive thrombin increased the concentration of active thrombin available for substrate interaction. Quick I-induced responses were not enhanced, consistent with its inability to interact with the high-affinity site. Since thrombin bound to the high-affinity site is proteolytically inactive, we hypothesize that the thrombin high-affinity binding site on platelets functions to alter thrombin activity and platelet activation.  相似文献   

13.
The sequence of two overlapping cDNA clones for the zinc metalloproteinase hemorrhagic toxin e (also known as atrolysin e, EC 3.4.24.44) from the venom gland of Crotalus atrox, the Western diamondback rattlesnake, is presented. The assembled cDNA sequence is 1975 nucleotides in length and encodes an open reading frame of 478 amino acids. The mature hemorrhagic toxin e protein as isolated from the crude venom has a molecular weight of approximately 24,000 and thus represents the processed product of this open reading frame. From the deduced amino acid sequence, it can be hypothesized that the enzyme is translated with a signal sequence of 18 amino acids, an amino-terminal propeptide of 169 amino acids, a central hemorrhagic proteinase domain of 202 amino acids, and a carboxy-terminal sequence of 89 amino acids. The propeptide has a short region similar to the region involved in the activation of matrix metalloproteinase zymogens. The proteinase domain is similar to other snake venom metalloproteinases, with over 57% identity to the low molecular weight proteinases HR2a and H2-proteinase from the Habu snake Trimeresurus flavoviridis. The carboxy-terminal region, which is not observed in the mature protein, strongly resembles the protein sequence immediately following the proteinase domain of HR1B (a high molecular weight hemorrhagic proteinase from the venom of T. flavoviridis) and the members of a different family of snake venom polypeptides known for their platelet aggregation inhibitory activity, the disintegrins. The cDNA sequence bears striking similarity to a previously reported sequence for a disintegrin cDNA. This report is evidence that this subfamily of venom metalloproteinases is synthesized in a proenzyme form which must be proteolytically activated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The serine peptidases, thrombocytin and PA-BJ, isolated from the venom of Bothrops atrox and Bothrops jararaca, respectively, induce platelet aggregation and granule secretion without clotting fibrinogen. The specific platelet aggregation activity of each enzyme was about 15 times lower than that of thrombin. This activity was blocked by monoclonal antibodies recognizing protease activated receptor 1 (PAR1) and by heparin, but not by hirudin nor thrombomodulin. Both enzymes induced calcium mobilization in platelets and desensitized platelets to the action of thrombin and the SFLLRN peptide. We compared the effect of thrombin, PA-BJ, and thrombocytin on the degradation of the soluble N-terminal domain of the PAR1 receptor. The major cleavage site by thrombin and both viper enzymes was Arg41-Ser42. In addition, a rapid cleavage of the peptide bond at Arg46-Asn47 by the viper enzymes was observed, resulting in the inactivation of the tethered ligand. PA-BJ and thrombocytin both cleaved at 41-42 and 46-47 peptide bonds, and fragment 42-103 disappeared rapidly. Both viper enzymes caused calcium mobilization in fibroblasts transfected with PAR4 and desensitized these cells to the thrombin action. In conclusion, both PAR1 and PAR4 mediate the effect of viper venom serine peptidases on platelets.  相似文献   

15.
Disintegrin is one of the functionally distinct domains in high molecular weight metalloproteases from various snake venoms and generally has an Arg-Gly-Asp (RGD) sequence that is recognized by specific cell surface integrins. A cDNA encoding the disintegrin-like domain of a snake venom metalloprotease was cloned, expressed in Pichia pastoris, and molecular function of the recombinant protein was characterized. The cDNA sequence indicated that the disintegrin-like domain contains an Asp-Glu-Cys-Asp (DECD) sequence in place of the RGD motif. The expressed disintegrin-like protein was designated as halydin and it was able to inhibit human platelet aggregation in a dose-dependent manner. Unlike other typical RGD-disintegrins, the recombinant non-RGD disintegrin, halydin, inhibited platelet aggregation by suppressing platelet adhesion to collagen rather than by blocking fibrinogen binding to glycoprotein (GP) IIb-IIIa on the platelet surface. Experimental evidence suggests that halydin binds to integrin alpha2beta1 on the platelet surface.  相似文献   

16.
Koh YS  Kim DS 《Molecules and cells》2000,10(4):437-442
A novel platelet aggregation inhibitor, sal-C, was purified to homogeneity from the venom of Korean snake (Agkistrodon halys brevicaudus). Several lines of experimental evidence clearly indicated that sal-C inhibits not only the collagen-induced platelet aggregation, but also the aggregation mediated by the cell surface glycoprotein IIb-IIIa (GP IIb-IIIa). We have isolated the cDNA encoding sal-C from the cDNA library of the snake venom gland and analyzed its complete nucleotide sequence. Sal-C is a single-chain polypeptide composed of 212 amino acids including 24 cysteines. The deduced polypeptide sequence of sal-C demonstrated considerable homology to previously described protein species of the collagen-induced platelet aggregation inhibitor family. Sal-C does not have the Arg-Gly-Asp (RGD) motif, but contains the Ser-Glu-Cys-Asp sequence. Interestingly, sal-C was found to inhibit GP IIb-IIIa binding to immobilized fibrinogen which is antagonized by the typical RGD motif of disintegrins.  相似文献   

17.
Vipera lebetina venom contains different metallo- and serine proteinases that affect coagulation and fibrin(ogen)olysis. A novel serine proteinase from V. Lebetina venom having ChymoTrypsin Like Proteolytic activity (VLCTLP) was purified to homogeneity from the venom using Sephadex G-100sf, DEAE-cellulose, heparin-agarose and FPLC on Superdex 75 chromatographies. VLCTLP is a glycosylated serine proteinase with a molecular mass of 41926 Da. It reacts with N-acetyl-l-tyrosine ethyl ester (ATEE) but not with Suc-Ala-Ala-Pro-Phe-pNA or Suc-Ala-Ala-Pro-Leu-pNA. The complete amino acid sequence of the VLCTLP is deduced from the nucleotide sequence of the cDNA encoding this protein. The full-length cDNA sequence of the VLCTLP encodes open reading frame of 257 amino acid residues that includes a putative signal peptide of 18 amino acids, a proposed activation peptide of six amino acid residues and serine proteinase of 233 amino acid residues. VLCTLP belongs to the S1 (chymotrypsin) subfamily of proteases. The multiple alignment of its deduced amino acid sequence showed structural similarity with other serine proteases from snake venoms. The protease weakly hydrolyses azocasein, Aα-chain and more slowly Bβ-chain of fibrinogen. VLCTLP does not cleave fibrin and has no gelatinolytic activity. Specificity studies against peptide substrates (angiotensin I and II, oxidized insulin B-chain, glucagon, fibrinogen fragments etc.) showed that VLCTLP catalysed the cleavage of peptide bonds after tyrosine residues. VLCTLP is the only purified and characterized serine proteinase from snake venoms that catalyses ATEE hydrolysis. We detected ATEE-hydrolysing activities also in 9 different Viperidae and Crotalidae venoms.  相似文献   

18.
Triflavin, an Arg-Gly-Asp-containing snake venom peptide, inhibits platelet aggregation through the blockade of fibrinogen binding to the activated platelets. It binds to fibrinogen receptors associated with the glycoprotein IIb/IIIa complex with a Kd value of 7 x 10(-8) M. In this report, a chemical cross-linking approach was used to further characterize the binding components of triflavin on platelet membrane. 125I-triflavin binding was performed with the aid of a chemical cross-linking reagent, DTSSP. Analysis of the cross-linked products by SDS-PAGE (7.5% gel) and subsequent autoradiogram revealed that 125I-triflavin was cross-linked specifically to a protein with an apparent molecular weight of 1.1 x 10(5), and this reaction was inhibited by GRGDS and excess of non-labeled triflavin. This 110 KDa component was identified to be GpIIIa, recognized by AP3, a mAb against GpIIIa, by immunoblotting technique. These results indicate that the triflavin-binding sites on platelets reside at a site in close proximity to GpIIIa.  相似文献   

19.
The purification, complete amino acid sequence, functional activity, and structural modeling are described for mambin, a platelet glycoprotein GP IIb-IIIa antagonist and potent inhibitor of platelet aggregation from the venom of the Elapidae snake Dendroaspis jamesonii (Jameson's mamba). Mambin is 59 residues in length and contains four disulfide linkages and an RGD amino acid sequence found in protein ligands that bind to GP IIb-IIIa. Mambin inhibits ADP-induced platelet aggregation (IC50 = 172 +/- 22 nM) and inhibits the binding of purified platelet fibrinogen receptor GP IIb-IIIa to immobilized fibrinogen (IC50 = 3.1 +/- 0.8 nM). Mambin has very little sequence similarity to the Viperidae family of platelet aggregation inhibitors, except for the RGD-containing region in the protein. However, mambin does have ca. 47% similarity to the short-chain postsynaptic neurotoxins found in other Elapidae venoms, which do not contain the RGD sequence and do not act as GP IIb-IIIa antagonists. On the basis of its circular dichroism spectrum, mambin has a beta-sheet structure characteristic of the neurotoxins. Molecular modeling of the mambin sequence onto the erabutoxin b structure predicts a very similar structure within the entire protein except for the loop containing the RGD sequence. Mambin may therefore represent a genetic hybrid of neurotoxic and hemotoxic proteins found in snake venoms.  相似文献   

20.
Savignygrin, a platelet aggregation inhibitor that possesses the RGD integrin recognition motif, has been purified from the soft tick Ornithodoros savignyi. Two isoforms with similar biological activities differ because of R52G and N60G in their amino acid sequences, indicating a recent gene duplication event. Platelet aggregation induced by ADP (IC50, 130 nm), collagen, the thrombin receptor-activating peptide, and epinephrine was inhibited, although platelets were activated and underwent a shape change. The binding of alpha-CD41 (P2) to platelets, the binding of purified alpha(IIb)beta3 to fibrinogen, and the adhesion of platelets to fibrinogen was inhibited, indicating a targeting of the fibrinogen receptor. In contrast, the adhesion of osteosarcoma cells that express the integrin alpha(v)beta3 to vitronectin or fibrinogen was not inhibited, indicating the specificity of savignygrin toward alpha(IIb)beta3. Savignygrin shows sequence identity to disagregin, a platelet aggregation inhibitor from the tick Ornithodoros moubata that lacks an RGD motif. The cysteine arrangement of savignygrin is similar to that of the bovine pancreatic trypsin inhibitor family of serine protease inhibitors. A homology model based on the structure of the tick anticoagulant peptide indicates that the RGD motif is presented on the substrate-binding loop of the canonical BPTI inhibitors. However, savignygrin did not inhibit the serine proteases fXa, plasmin, thrombin, or trypsin. This is the first report of a platelet aggregation inhibitor that presents the RGD motif using the Kunitz-BPTI protein fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号