首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A gene encoding a homologue of the Escherichia coli GidA protein (glucose-inhibited division protein A) lies immediately upstream of aglU, a gene encoding a WD-repeat protein required for motility and development in Myxococcus xanthus. The GidA protein of M. xanthus shares about 48% identity overall with the small (approximately equal to 450 amino acid) form of GidA from eubacteria and about 24% identity overall with the large (approximately equal to 620 amino acid) form of GidA from eubacteria and eukaryotes. Each of these proteins has a conserved dinucleotide-binding motif at the N-terminus. To determine if GidA binds dinucleotide, the M. xanthus gene was expressed with a His6 tag in E. coli cells. Purified rGidA is a yellow protein that absorbs maximally at 374 and 450 nm, consistent with FAD or FMN. Thin-layer chromatography (TLC) showed that rGidA contains an FAD cofactor. Fractionation and immunocytochemical localization show that full length GidA protein is present in the cytoplasm and transported to the periplasm of vegetative-grown M. xanthus cells. In cells that have been starved for nutrients, GidA is found in the cytoplasm. Although GidA lacks an obvious signal sequence, it contains a twin arginine transport (Tat) motif, which is conserved among proteins that bind cofactors in the cytoplasm and are transported to the periplasm as folded proteins. To determine if GidA, like AglU, is involved in motility and development, the gidA gene was disrupted. The gidA- mutant has wild-type gliding motility and initially is able to form fruiting bodies like the wild type when starved for nutrients. However, after several generations, a stable derivative arises, gidA*, which is indistinguishable from the gidA- parent on vegetative medium, but is no longer able to form fruiting bodies. The gidA* mutant releases a heat-stable, protease-resistant, small molecular weight molecule that acts in trans to inhibit aggregation and gene expression of wild-type cells during development.  相似文献   

2.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

3.
4.
We report here the identification and characterization of a member of the Myxococcus xanthus SdeK signal transduction pathway, BrgE. This protein was identified as an SdeK-interacting component using a yeast two-hybrid screen, and we further confirmed this interaction by the glutathione S-transferase (GST) pulldown assay. Additional yeast two-hybrid analyses revealed that BrgE preferentially interacts with the putative amino-terminal sensor domain of SdeK, but not with the carboxy-terminal kinase domain. A brgE insertion strain was shown to be blocked in development between aggregation and mound formation, and decreased by 50-fold in viable spore production compared with the parental wild type. These phenotypes are similar to those of sdeK mutants. The brgE mutation also altered expression of a sample of Tn5 lac developmental markers that are also SdeK regulated. Finally, we demonstrated that a brgE sdeK double mutant has a more severe sporulation defect than either of the two single mutants, suggesting that BrgE and SdeK act synergistically to regulate wild-type levels of sporulation. In sum, these data suggest that BrgE operates as an auxiliary factor to stimulate the SdeK signal transduction pathway by directly binding to the amino-terminal sensor domain of SdeK.  相似文献   

5.
Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming on rich medium and, upon starvation, aggregation to form fruiting bodies containing spores. Both of these behaviours require multiple Ser/Thr protein kinases. In this paper, we report the first Ser/Thr protein phosphatase gene, pph1, from M. xanthus. DNA sequence analysis of pph1 indicates that it encodes a protein of 254 residues (Mr = 28 308) with strong homology to eukaryotic PP2C phosphatases and that it belongs to a new group of bacterial protein phosphatases that are distinct from bacterial PP2C phosphatases such as RsbU, RsbX and SpoIIE. Recombinant His-tagged Pph1 was purified from Escherichia coli and shown to have Mn2+ or Mg2+ dependent, okadaic acid-resistant phosphatase activity on a synthetic phosphorylated peptide, RRA(pT)VA, indicating that Pph1 is a PP2C phosphatase. Pph1-expression was observed under both vegetative and developmental conditions, but peaked during early aggregation. A pph1 null mutant showed defects during late vegetative growth, swarming and glycerol spore formation. Under starvation-induced developmental conditions, the mutant showed reduced aggregation and failure to form fruiting bodies with viable spores. Using the yeast two-hybrid system, we have observed a strong interaction between Pph1 and the M. xanthus protein kinase Pkn5, a negative effector of development. These results suggest a functional link between a Pkn2-type protein kinase and a PP2C phosphatase.  相似文献   

6.
Myxococcus xanthus is a predatory bacterium that exhibits complex social behavior. The most pronounced behavior is the aggregation of cells into raised fruiting body structures in which cells differentiate into stress-resistant spores. In the laboratory, monocultures of M. xanthus at a very high density will reproducibly induce hundreds of randomly localized fruiting bodies when exposed to low nutrient availability and a solid surface. In this report, we analyze how M. xanthus fruiting body development proceeds in a coculture with suitable prey. Our analysis indicates that when prey bacteria are provided as a nutrient source, fruiting body aggregation is more organized, such that fruiting bodies form specifically after a step-down or loss of prey availability, whereas a step-up in prey availability inhibits fruiting body formation. This localization of aggregates occurs independently of the basal nutrient levels tested, indicating that starvation is not required for this process. Analysis of early developmental signaling relA and asgD mutants indicates that they are capable of forming fruiting body aggregates in the presence of prey, demonstrating that the stringent response and A-signal production are surprisingly not required for the initiation of fruiting behavior. However, these strains are still defective in differentiating to spores. We conclude that fruiting body formation does not occur exclusively in response to starvation and propose an alternative model in which multicellular development is driven by the interactions between M. xanthus cells and their cognate prey.  相似文献   

7.
M. xanthus has a complex multicellular lifestyle including swarming, predation and development. These behaviors depend on the ability of the cells to achieve directed motility across solid surfaces. M. xanthus cells have evolved two motility systems including Type-IV pili that act as grappling hooks and a controversial engine involving mucus secretion and fixed focal adhesion sites. The necessity for cells to coordinate the motility systems and to respond rapidly to environmental cues is reflected by a complex genetic network involving at least three complete sets of chemosensory systems and eukaryotic-like signaling proteins. In this review, we discuss recent advances suggesting that motor synchronization results from spatial oscillations of motility proteins. We further propose that these dynamics are modulated by the action of multiple upstream complementary signaling systems. M. xanthus is thus an exciting emerging model system to study the intricate processes of directed cell migration.  相似文献   

8.
Iodination of Myxococcus xanthus during development   总被引:5,自引:4,他引:1       下载免费PDF全文
Intact cells of Myxococcus xanthus were iodinated with [125I]lactoperoxidase to permit examination of the surface components accessible to labeling during cell development. Vegetative cells, starved on a defined solid medium, aggregated, formed fruiting bodies, and produced myxospores. Cells collected at different stages were iodinated, and their proteins were analyzed by one- and two-dimensional electrophoresis and autoradiography. One-dimensional electrophoresis revealed six iodinated bands in vegetative cell extracts. During development, 10 radioactive bands were detected, 4 of which migrated to the same positions as those of vegetative cells. Only six bands were detected in purified, labeled myxospores. Of these, one band possessed mobility similar to that of labeled vegetative cell proteins, whereas the other bands possessed mobility similar to that detected in developing cells. Analysis of two-dimensional gels indicated that at least 14 proteins were iodinated in vegetative cells, one of which was intensely labeled (protein b). Another of the proteins (protein a) was labeled throughout development. During development, about 30 proteins were iodinated and the prominently labeled ones were designated c, d, e, f, and g. The latter two (proteins f and g) were not detected in purified, iodinated myxospores. The data indicated a pronounced change in surface structure during development; some of the change may be involved in cellular interaction during aggregation.  相似文献   

9.
An insertion in the rasA gene entirely blocked developmental aggregation and sporulation in Myxococcus xanthus while also reducing swarm expansion on a 0.3% agar surface. Data presented here demonstrate that rasA is required for extracellular fibril formation and social gliding motility.  相似文献   

10.
Myxococcus xanthus cells glide on solid surfaces and are chemotactically stimulated by certain phosphatidylethanolamine species. The dif gene cluster consists of six genes, difABCDEG, five of which encode proteins homologous to known chemotaxis proteins. DifA and DifE are required for the biosynthesis of fibrils, an extracellular matrix comprised of polysaccharide and protein. Chemotactic stimulation by 1,2-O-Bis[11-(Z)-hexadecenoyl]-sn-glycero-3-phosphatidylethanolamine (16:1 PE) and dilauroyl PE (12:0 PE) requires fibrils. Although previous work has shown that difA and difE mutants are not stimulated by 12:0 PE, these results do not distinguish between a dependence on fibrils or a direct role in chemosensory transduction. Here we provide evidence that the Dif chemosensory pathway directly mediates PE sensory transduction. First, stimulation by and adaptation to 16:1 PE requires all of the dif genes, including difBDG, which are not essential for fibril biogenesis. Second, a specific residue within the first putative methylation domain of DifA is required for stimulation by 16:1 PE but not fibril biogenesis. Transmembrane signalling through a chimeric NarX-DifA chemoreceptor is required for fibril formation but not for stimulation by or adaptation to 16:1 PE. Third, difD and difE are required for stimulation by dioleoyl PE (18:1 PE) although the response does not require fibrils. Taken together these results argue that the Dif pathway mediates both matrix formation and lipid chemotaxis.  相似文献   

11.
Previous studies have demonstrated that fruiting body-derived Myxococcus xanthus myxospores contain two fully replicated copies of its genome, implying developmental control of chromosome replication and septation. In this study, we employ DNA replication inhibitors to determine if chromosome replication is essential to development and the exact time frame in which chromosome replication occurs within the developmental cycle. Our results show that DNA replication during the aggregation phase is essential for developmental progression, implying the existence of a checkpoint that monitors chromosome integrity at the end of the aggregation phase.  相似文献   

12.
The twin-arginine translocation (Tat) system serves to export fully folded proteins across the cytoplasmic membrane. In many bacteria, three major components, TatA, TatB and TatC, are the functionally essential constituents of the Tat system. A Myxococcus xanthus tatB–tatC deletion mutant could aggregate and form mounds, but was unable to form fruiting bodies under nutritionally limiting conditions. When tatB–tatC mutant vegetative cells were cultured with 0.5 M glycerol, the cell morphology changed to spore-like spherical cells, but the spores were not resistant to heat and sonication treatments. In contrast to the wild-type strain, the tatB–tatC mutant also showed a decreased cell growth rate and a lower maximum cell concentration. These results suggest possibility that the Tat system may contribute to export of various important proteins for development and growth for M. xanthus.  相似文献   

13.
The Myxococcus xanthus gene, pkn9 , encodes a protein that contains significant homology with eukaryotic Ser/Thr protein kinases. The pkn9 gene was singled out of a previously identified family of kinase genes by amplification techniques that displayed differences in kinase gene expression during selected periods of the M. xanthus life cycle. Pkn9 was constitutively expressed during vegetative growth and upregulated during the aggregation stage of early development. It consists of 589 amino acids, and its N-terminal 394 residues show 38% identity with both Pkn1 and Pkn2 of M. xanthus . This region also shows 29, 25 and 29% identity with myosin light-chain kinase, protein kinase C, and cAMP-dependent protein kinase, respectively. A 22-residue hydrophobic transmembrane domain separates the kinase domain from the 173-residue C-terminal domain that resides on the outside of the inner membrane. The C-terminal domain contains two sets of tandem repeats of 13 and 10 residues which have no known function. When expressed in Escherichia coli under the T7 promoter, Pkn9 was found to be phosphorylated on serine and threonine residues. Disruption of the pkn9 kinase catalytic subdomains I–III by the insertion of a kanamycin-resistance gene resulted in slightly delayed, smaller and more-crowded fruiting bodies, while spore formation was normal. Total deletion of the pkn9 gene caused severely reduced progression through development resulting in light loose mounds that become slightly more compact over time. Development progressed further at the centre than at the edge of the spot, and spore formation was significantly reduced. Two-dimensional gel analysis revealed that both the disruption and the deletion of pkn9 prevented the expression of five membrane proteins (KREP9-1-4). These results suggest that the loss of Pkn9 kinase activity caused altered fruiting-body formation, the absence of the KREP9 proteins in the membrane, and reduced spore production.  相似文献   

14.
Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms.  相似文献   

15.
A great deal of progress has been made in the studies of fruiting body development and social gliding in Myxocococcus xanthus in the past few years. This includes identification of the bone fide C-signal and a receptor for type IV pili, and development of a model for the mechanism of adventurous gliding motility. It is anticipated that the next few years will see even more progress as the complete genome sequence is available and genomic and proteomic tools are applied to the study of M. xanthus social behaviors.  相似文献   

16.
Y Kimura  R Sato  K Mimura    M Sato 《Journal of bacteriology》1997,179(22):7098-7102
A dcm-1 mutant, obtained by transposon mutagenesis of Myxococcus xanthus, could aggregate and form mounds but was unable to sporulate under nutrient starvation. A sequence analysis of the site of insertion of the transposon showed that the insertion lies within the 3' end of a 1,572-bp open reading frame (ORF) designated the M. xanthus pccB ORF. The wild-type form of the M. xanthus pccB gene, obtained from a lambdaEMBL library of M. xanthus, shows extensive similarity to a beta subunit of propionyl coenzyme A (CoA) carboxylase, an alpha subunit of methylmalonyl-CoA decarboxylase, and a 12S subunit of transcarboxylase. In enzyme assays, extracts of the dcm-1 mutant were deficient in propionyl-CoA carboxylase activity. This enzyme catalyzes the ATP-dependent carboxylation of propionyl-CoA to yield methylmalonyl-CoA. The methylmalonyl-CoA rescued the dcm-1 mutant fruiting body and spore development. During development, the dcm-1 mutant cells also had reduced levels of long-chain fatty acids (C16 to C18) compared to wild-type cells.  相似文献   

17.
18.
Cells of Myxococcus xanthus will, at times, organize their movement such that macroscopic traveling waves, termed ripples, are formed as groups of cells glide together on a solid surface. The reason for this behavior has long been a mystery, but we demonstrate here that rippling is a feeding behavior which occurs when M. xanthus cells make direct contact with either prey or large macromolecules. Rippling has been observed during two fundamentally distinct environmental conditions: (i) starvation-induced fruiting body development and (ii) predation of other organisms. Our results indicate that case (i) does not occur in all wild-type strains and is dependent on the intrinsic level of autolysis. Analysis of predatory rippling indicates that rippling behavior is inducible during predation on proteobacteria, gram-positive bacteria, yeast (such as Saccharomyces cerevisiae), and phage. Predatory efficiency decreases under genetic and physiological conditions in which rippling is inhibited. Rippling will also occur in the presence of purified macromolecules such as peptidoglycan, protein, and nucleic acid but does not occur in the presence of the respective monomeric components and also does not occur when the macromolecules are physically separated from M. xanthus cells. We conclude that rippling behavior is a mechanism utilized to efficiently consume nondiffusing growth substrates and that developmental rippling is a result of scavenging lysed cell debris.  相似文献   

19.
Rifampin, an antibiotic which is known to bind to and inhibit RNA polymerase, was used to probe the molecular regulation of development in Myxococcus xanthus. Rifampin-resistant mutants were screened for defects in fruiting-body formation. About 20% of the isolates in the initial screenings showed major defects in developmental aggregation or sporulation. Eleven independent mutants with wild-type growth rates and stable phenotypes were analyzed by transduction. In these strains, the rifampin-resistant and nonfruiting phenotypes showed cotransduction frequencies equal to or greater than 99.0 to 99.9%. The RNA polymerase activities were resistant to rifampin in vitro, indicating that the RNA polymerase is altered in these strains. Although their fruiting phenotypes are heterogeneous, these strains can be divided into two classes based on the level of aggregation. The results suggest that RNA polymerase plays a significant role in the regulation of development in M. xanthus since mutations which cause no apparent changes in vegetative growth result in striking defects in fruiting-body formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号