首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the human diet is markedly different from the diets of closely related primate species, the influence of diet on phenotypic and genetic differences between humans and other primates is unknown. In this study, we analyzed gene expression in laboratory mice fed diets typical of humans and of chimpanzees. The effects of human diets were found to be significantly different from that of a chimpanzee diet in the mouse liver, but not in the brain. Importantly, 10% of the genes that differ in their expression between humans and chimpanzee livers differed also between the livers of mice fed the human and chimpanzee diets. Furthermore, both the promoter sequences and the amino acid sequences of these diet-related genes carry more differences between humans and chimpanzees than random genes. Our results suggest that the mouse can be used to study at least some aspects of human-specific traits.  相似文献   

2.
3.
4.
DNA methylation is a pervasive epigenetic DNA modification that strongly affects chromatin regulation and gene expression. To date, it remains largely unknown how patterns of DNA methylation differ between closely related species and whether such differences contribute to species-specific phenotypes. To investigate these questions, we generated nucleotide-resolution whole-genome methylation maps of the prefrontal cortex of multiple humans and chimpanzees. Levels and patterns of DNA methylation vary across individuals within species according to the age and the sex of the individuals. We also found extensive species-level divergence in patterns of DNA methylation and that hundreds of genes exhibit significantly lower levels of promoter methylation in the human brain than in the chimpanzee brain. Furthermore, we investigated the functional consequences of methylation differences in humans and chimpanzees by integrating data on gene expression generated with next-generation sequencing methods, and we found a strong relationship between differential methylation and gene expression. Finally, we found that differentially methylated genes are strikingly enriched with loci associated with neurological disorders, psychological disorders, and cancers. Our results demonstrate that differential DNA methylation might be an important molecular mechanism driving gene-expression divergence between human and chimpanzee brains and might potentially contribute to the evolution of disease vulnerabilities. Thus, comparative studies of humans and chimpanzees stand to identify key epigenomic modifications underlying the evolution of human-specific traits.  相似文献   

5.
6.
Hu HY  Guo S  Xi J  Yan Z  Fu N  Zhang X  Menzel C  Liang H  Yang H  Zhao M  Zeng R  Chen W  Pääbo S  Khaitovich P 《PLoS genetics》2011,7(10):e1002327
Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.  相似文献   

7.
One of the most distinctive characteristics of humans among primates is the size, organization and function of the brain. A recent study has proposed that there was widespread accelerated sequence evolution of genes functioning in the nervous system during human origins. Here we test this hypothesis by a genome-wide analysis of genes that are expressed predominantly or specifically in brain tissues and genes that have important roles in the brain, identified on the basis of five different definitions of brain specificity. Although there is little overlap among the five sets of brain-specific genes, none of them supports human acceleration. On the contrary, some datasets show significantly fewer nonsynonymous substitutions in humans than in chimpanzees for brain-specific genes relative to other genes in the genome. Our results suggest that the unique features of the human brain did not arise by a large number of adaptive amino acid changes in many proteins.  相似文献   

8.
Aging and gene expression in the primate brain   总被引:2,自引:2,他引:0       下载免费PDF全文
  相似文献   

9.
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise approximately 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites. Thus, they can influence the expression of nearby human genes. All known human-specific LTRs belong to the HERV-K (human ERV) family, the most active family in the human genome. It is likely that some of these ERVs could have integrated into regulatory regions of the human genome, and therefore could have had an impact on the expression of adjacent genes, which have consequently contributed to human evolution. This review discusses possible functional consequences of ERV integration in active coding regions.  相似文献   

10.
The genomic DNA sequences of humans and chimpanzees differ by only 1.24%. Recently, however, substantial differences in gene-expression patterns between the two species have been revealed. In this article, we investigate the genomic distribution of such differences. Besides confirming previous findings about the evolution of sex chromosomes and duplications, we show that chromosomal rearrangements are associated with increased gene-expression differences in the brain and that rearrangements can have both direct and indirect effects on the expression of linked genes. In addition, our results are consistent with a role for some rearrangements in the original speciation events that separated the human and chimpanzee lineages.  相似文献   

11.
Identifying the molecular underpinnings of the neural specializations that underlie human cognitive and behavioral traits has long been of considerable interest. Much research on human-specific changes in gene expression and epigenetic marks has focused on the prefrontal cortex, a brain structure distinguished by its role in executive functions. The cerebellum shows expansion in great apes and is gaining increasing attention for its role in motor skills and cognitive processing, including language. However, relatively few molecular studies of the cerebellum in a comparative evolutionary context have been conducted. Here, we identify human-specific methylation in the lateral cerebellum relative to the dorsolateral prefrontal cortex, in a comparative study with chimpanzees (Pan troglodytes) and rhesus macaques (Macaca mulatta). Specifically, we profiled genome-wide methylation levels in the three species for each of the two brain structures and identified human-specific differentially methylated genomic regions unique to each structure. We further identified which differentially methylated regions (DMRs) overlap likely regulatory elements and determined whether associated genes show corresponding species differences in gene expression. We found greater human-specific methylation in the cerebellum than the dorsolateral prefrontal cortex, with differentially methylated regions overlapping genes involved in several conditions or processes relevant to human neurobiology, including synaptic plasticity, lipid metabolism, neuroinflammation and neurodegeneration, and neurodevelopment, including developmental disorders. Moreover, our results show some overlap with those of previous studies focused on the neocortex, indicating that such results may be common to multiple brain structures. These findings further our understanding of the cerebellum in human brain evolution.  相似文献   

12.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts is located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

13.
A full genome analysis of differences between the gene expression in the human and chimpanzee brains revealed that the gene for transthyretin, the carrier of thyroid hormones, is differently transcribed in the cerebella of these species. A 7-kbp DNA fragment of chimpanzee was sequenced to identify possible regulatory sequences responsible for the differences in expression. One hundred and thirteen substitutions were found in the chimpanzee sequence in comparison with the human sequence. About 40% of the substitutions were revealed within the repeating elements of the genome; their location and sizes did not differ from those in the corresponding fragments of the human genome, and the nucleotide sequences had a high degree of identity. A comparison of nucleotide sequences of the transthyretin region of human, chimpanzee, and mouse genes revealed substantial differences in the distribution of G + C content along the examined fragment in the human (chimpanzee) and mouse genes and allowed us to localize three sequence tracts with a higher degree of identity in the three species. One of these tracts was located in the promoter region of the gene, and the other two probably determine the specificity of transthyretin gene expression in the liver and brain. One of the conserved tracts of the chimpanzee genome was found to have a single and a triple nucleotide substitution. The triple substitution distinguishes chimpanzees from humans and mice, which have identical sequences of this site. It is likely that these substitutions are responsible for the differences in the expression levels of the transthyretin gene in the human and chimpanzee brains.  相似文献   

14.
Gene diversity patterns at 10 X-chromosomal loci in humans and chimpanzees   总被引:5,自引:1,他引:4  
We have investigated the pattern and extent of nucleotide diversityin 10 X-chromosomal genes where mutations are known to causemental retardation in humans. For each gene, we sequenced theentire coding region from cDNA in humans, chimpanzees, and orangutans,as well as about 3 kb of genomic DNA in 20 humans sampled worldwideand in 10 chimpanzees representing two "subspecies." Overallnucleotide diversity in these genes is about twofold lower inhumans than in chimpanzees, and nucleotide diversity withinand between species is low, suggesting that a high level offunctional constraint acts on these genes. Strikingly, we findthat a summary of the allele frequency spectrum is significantlycorrelated in humans and chimpanzees, perhaps reflecting verysimilar levels of constraint at these genes in the two species.A possible exception is FMR2, which shows a higher number ofnonsynonymous than synonymous substitutions on the human lineage,suggesting the action of positive selection.  相似文献   

15.
The antigenic closeness between the chimpanzee alloantigen Rc of the R-C-E-F system, and the human alloantigen Rho(D) suggests a phylogeconnection between their genes. To confirm at the molecular level the common origin of these genes, genomic DNA from 16 unrelated chimpanzees of various R-C-E-F phenotypes were digested by three restriction enzymes and analyzed by Southern blot using a human Rh cDNA probe and three exon-specific probes. Restrictions profiles displayed reach polymorphism. Correlations between some bands and certain R-C-E-F phenotypes demonstrate that the human Rh cDNA probe defines in chimpanzee genomic DNA some genes of the R-C-E-F system.  相似文献   

16.
A scan for positively selected genes in the genomes of humans and chimpanzees   总被引:17,自引:3,他引:14  
Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.  相似文献   

17.
Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees.  相似文献   

18.
19.
To understand whether any human-specific new genes may be associated with human brain functions, we computationally screened the genetic vulnerable factors identified through Genome-Wide Association Studies and linkage analyses of nicotine addiction and found one human-specific de novo protein-coding gene, FLJ33706 (alternative gene symbol C20orf203). Cross-species analysis revealed interesting evolutionary paths of how this gene had originated from noncoding DNA sequences: insertion of repeat elements especially Alu contributed to the formation of the first coding exon and six standard splice junctions on the branch leading to humans and chimpanzees, and two subsequent substitutions in the human lineage escaped two stop codons and created an open reading frame of 194 amino acids. We experimentally verified FLJ33706''s mRNA and protein expression in the brain. Real-Time PCR in multiple tissues demonstrated that FLJ33706 was most abundantly expressed in brain. Human polymorphism data suggested that FLJ33706 encodes a protein under purifying selection. A specifically designed antibody detected its protein expression across human cortex, cerebellum and midbrain. Immunohistochemistry study in normal human brain cortex revealed the localization of FLJ33706 protein in neurons. Elevated expressions of FLJ33706 were detected in Alzheimer''s brain samples, suggesting the role of this novel gene in human-specific pathogenesis of Alzheimer''s disease. FLJ33706 provided the strongest evidence so far that human-specific de novo genes can have protein-coding potential and differential protein expression, and be involved in human brain functions.  相似文献   

20.
Hsieh WP  Chu TM  Wolfinger RD  Gibson G 《Genetics》2003,165(2):747-757
An emerging issue in evolutionary genetics is whether it is possible to use gene expression profiling to identify genes that are associated with morphological, physiological, or behavioral divergence between species and whether these genes have undergone positive selection. Some of these questions were addressed in a recent study (Enard et al. 2002) of the difference in gene expression among human, chimp, and orangutan, which suggested an accelerated rate of divergence in gene expression in the human brain relative to liver. Reanalysis of the Affymetrix data set using analysis of variance methods to quantify the contributions of individuals and species to variation in expression of 12,600 genes indicates that as much as one-quarter of the genome shows divergent expression between primate species at the 5% level. The magnitude of fold change ranges from 1.2-fold up to 8-fold. Similar conclusions apply to reanalysis of Enard et al. 2002 parallel murine data set. However, biases inherent to short oligonucleotide microarray technology may account for some of the tissue and species effects. At high significance levels, more differences were observed in the liver than in the brain in each of the pairwise species comparisons, so it is not clear that expression divergence is accelerated in the human brain. Further, there is an apparent bias toward upregulation of gene expression in the brain in both primates and mice, whereas genes are equally likely to be up- or downregulated in the liver when these species diverge. A small subset of genes that are candidates for adaptive divergence may be identified on the basis of a high ratio of interspecific to intraspecific divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号