首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protection of groundwater resources requires the development of reliable ecological indicators. Microorganisms involved in ecological services or being associated with particular hosts or habitats could be used for this purpose. Nevertheless, their tracking remains limited because of sampling issues, and a lack of devices for their long term monitoring. In the present study, three artificial substrates (glass and clay beads, and gravel particles) were tested in terms of efficacy at favoring bacterial growth, and at capturing bacterial diversity of waters (i.e., groundwater, surface water and wastewater). Total proteins, total carbohydrates, dehydrogenase and hydrolytic activities were used to monitor biofilm development on these artificial substrates. Fingerprinting analyses based on rrs (16S rRNA) − rrl (23S rRNA) spacer analyses (ARISA) and next generation sequencing (NGS) of partial rrs DNA segments (V5-V6) were used to compare operating taxonomic units (OTUs), and infer bacterial genera trapped on these substrates. Glass beads were found less efficient than the other two artificial substrates at increasing protein contents and microbial activities (hydrolytic and dehydrogenase activities). ARISA showed a discrimination of bacterial communities developing on artificial substrates that was matching water types. An incubation period of 7 days allowed a reliable assessment of bacterial diversity. From this incubation period, around 75% of water genera with more than four V5-V6 rrs DNA sequences detected in a water type were recovered from biofilms growing on artificial substrates. Based on relative abundances of genera, clay beads and gravel particles were more efficient than glass beads to capture and obtain bacterial communities matching those of the initial waters. Between 45–67% of similarities were found for these artificial substrates while it was between 36 and 43% for glass beads. This study demonstrated clay beads and gravel particles as being efficient tools for capturing bacterial diversity and monitoring bacterial growth. Overall, clay beads appeared the best choice for field monitoring because of the ease of their size standardization in comparison with gravel particles.  相似文献   

2.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700? (IS700; silicone technology), Intersleek 900? (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5'-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

3.
Legionella pneumophila persists for a long time in aquatic habitats, where the bacteria associate with biofilms and replicate within protozoan predators. While L. pneumophila serves as a paradigm for intracellular growth within protozoa, it is less clear whether the bacteria form or replicate within biofilms in the absence of protozoa. In this study, we analyzed surface adherence of and biofilm formation by L. pneumophila in a rich medium that supported axenic replication. Biofilm formation by the virulent L. pneumophila strain JR32 and by clinical and environmental isolates was analyzed by confocal microscopy and crystal violet staining. Strain JR32 formed biofilms on glass surfaces and upright polystyrene wells, as well as on pins of “inverse” microtiter plates, indicating that biofilm formation was not simply due to sedimentation of the bacteria. Biofilm formation by an L. pneumophila fliA mutant lacking the alternative sigma factor σ28 was reduced, which demonstrated that bacterial factors are required. Accumulation of biomass coincided with an increase in the optical density at 600 nm and ceased when the bacteria reached the stationary growth phase. L. pneumophila neither grew nor formed biofilms in the inverse system if the medium was exchanged twice a day. However, after addition of Acanthamoeba castellanii, the bacteria proliferated and adhered to surfaces. Sessile (surface-attached) and planktonic (free-swimming) L. pneumophila expressed β-galactosidase activity to similar extents, and therefore, the observed lack of proliferation of surface-attached bacteria was not due to impaired protein synthesis or metabolic activity. Cocultivation of green fluorescent protein (GFP)- and DsRed-labeled L. pneumophila led to randomly interspersed cells on the substratum and in aggregates, and no sizeable patches of clonally growing bacteria were observed. Our findings indicate that biofilm formation by L. pneumophila in a rich medium is due to growth of planktonic bacteria rather than to growth of sessile bacteria. In agreement with this conclusion, GFP-labeled L. pneumophila initially adhered in a continuous-flow chamber system but detached over time; the detachment correlated with the flow rate, and there was no accumulation of biomass. Under these conditions, L. pneumophila persisted in biofilms formed by Empedobacter breve or Microbacterium sp. but not in biofilms formed by Klebsiella pneumoniae or other environmental bacteria, suggesting that specific interactions between the bacteria modulate adherence.  相似文献   

4.
Around a third of oral bacteria cannot be grown using conventional bacteriological culture media. Community profiling targeting 16S rRNA and shotgun metagenomics methods have proved valuable in revealing the complexity of the oral bacterial community. Studies investigating the role of oral bacteria in health and disease require phenotypic characterizations that are possible only with live cultures. The aim of this study was to develop novel culture media and use an in vitro biofilm model to culture previously uncultured oral bacteria. Subgingival plaque samples collected from subjects with periodontitis were cultured on complex mucin-containing agar plates supplemented with proteose peptone (PPA), beef extract (BEA), or Gelysate (GA) as well as on fastidious anaerobe agar plus 5% horse blood (FAA). In vitro biofilms inoculated with the subgingival plaque samples and proteose peptone broth (PPB) as the growth medium were established using the Calgary biofilm device. Specific PCR primers were designed and validated for the previously uncultivated oral taxa Bacteroidetes bacteria HOT 365 and HOT 281, Lachnospiraceae bacteria HOT 100 and HOT 500, and Clostridiales bacterium HOT 093. All agar media were able to support the growth of 10 reference strains of oral bacteria. One previously uncultivated phylotype, Actinomyces sp. HOT 525, was cultivated on FAA. Of 93 previously uncultivated phylotypes found in the inocula, 26 were detected in in vitro-cultivated biofilms. Lachnospiraceae bacterium HOT 500 was successfully cultured from biofilm material harvested from PPA plates in coculture with Parvimonas micra or Veillonella dispar/parvula after colony hybridization-directed enrichment. The establishment of in vitro biofilms from oral inocula enables the cultivation of previously uncultured oral bacteria and provides source material for isolation in coculture.  相似文献   

5.
The antimicrobial performance of two fouling-release coating systems, Intersleek 700® (IS700; silicone technology), Intersleek 900® (IS900; fluoropolymer technology) and a tie coat (TC, control surface) was investigated in a short term (10 days) field experiment conducted at a depth of ca 0.5 m in the Marina Bandar Rawdha (Muscat, Oman). Microfouling on coated glass slides was analyzed using epifluorescence microscopy and adenosine-5′-triphosphate (ATP) luminometry. All the coatings developed biofilms composed of heterotrophic bacteria, cyanobacteria, seven species of diatoms (2 species of Navicula, Cylindrotheca sp., Nitzschia sp., Amphora sp., Diploneis sp., and Bacillaria sp.) and algal spores (Ulva sp.). IS900 had significantly thinner biofilms with fewer diatom species, no algal spores and the least number of bacteria in comparison with IS700 and the TC. The ATP readings did not correspond to the numbers of bacteria and diatoms in the biofilms. The density of diatoms was negatively correlated with the density of the bacteria in biofilms on the IS900 coating, and, conversely, diatom density was positively correlated in biofilms on the TC. The higher antifouling efficacy of IS900 over IS700 may lead to lower roughness and thus lower fuel consumption for those vessels that utilise the IS900 fouling-release coating.  相似文献   

6.
The majority of naturally occurring biofilms contain numerous microorganisms that have not yet been cultured. Additionally, there is little information available regarding the genetic structure and species diversity of these communities. Therefore, we characterised the species diversity, structure and metagenome of biofilms grown on stones and steel plates in the littoral zone of Lake Baikal (East Siberia, Russia) by applying three different approaches. First, light microscopy enabled identification of the species diversity of biofilm-forming cyanobacteria on different substrates with the dominance of Rivularia rufescens, Tolypothrix limbata, Chamaesiphon fuscus, Ch. subglobosus, and Heteroleibleinia pusilla. Additionally, scanning electron microscopy was used to show the spatial structure of biofilms. Finally, sequence analysis of 30,660 16S rRNA clones indicated a high diversity within the biofilm communities, with the majority of the microbes being closely related to Cyanobacteria (8–46% sequences), Proteobacteria (14–43%), and Bacteroidetes (10–41%). Rivularia sp., Pseudanabaena sp., and Chamaesiphon spp. were the dominant cyanobacterial phylotypes.  相似文献   

7.
Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed versus nonexposed biofilms) of the four-species biofilm was markedly higher than that in any of the single-species biofilms. Moreover, in biofilms established on glass surfaces in flow cells and subjected to invasion by the antibacterial protein-producing Pseudoalteromonas tunicata, the four-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less specific interactions. In summary, our data strongly indicate that synergistic effects promote biofilm biomass and resistance of the biofilm to antimicrobial agents and bacterial invasion in multispecies biofilms.  相似文献   

8.
The community composition and ecophysiological features of microbial autotrophic biofilms were studied in Fuente Podrida, a cold sulfur spring located in East Spain. We demonstrated how different ecophysiological strategies, such as resistance and/or utilization of sulfide and oxygen, light adaptation, or resistance to high water flow, allow each of the microorganisms described to efficiently colonize several areas within the environmental gradient. In the zone of the spring constantly influenced by sulfide-rich waters, biofilms were formed by purple bacteria, cyanobacteria, and filamentous colorless sulfur bacteria. Purple bacteria showed higher photosynthetic efficiency per pigment unit than cyanobacteria, although they were dominant only in anoxic areas. Two filamentous cyanobacteria, strain UVFP1 and strain UVFP2, were also abundant in the sulfide-rich area. Whereas the cyanobacterial strain UVFP2 shows a strategy based on the resistance to sulfide of oxygenic photosynthesis, strain UVFP1, additionally, has the capacity for sulfide-driven anoxygenic photosynthesis. Molecular phylogenetic analyses cluster the benthic strain UVFP1 with genus Planktothrix, but with no particular species, whereas UVFP2 does not closely cluster with any known cyanobacterial species. The colorless sulfur bacterium Thiothrix sp. extended throughout the zone in which both sulfide and oxygen were present, exhibiting its capacity for chemolithoautotrophic dark carbon fixation. Downstream from the source, where springwater mixes with well-oxygenated stream water and sulfide disappears, autotrophic biofilms were dominated by diatoms showing higher photosynthetic rates than cyanobacteria and, by a lesser extent, by a sulfide-sensitive cyanobacterium (strain UVFP3) well adapted to low light availability, although in the areas of higher water velocity far from the river shore, the dominance shifted to crust-forming cyanobacteria. Both types of microorganisms were highly sensitive to sulfide impeding them from occupying sulfide-rich areas of the spring. Sulfide, oxygen, light availability, and water velocity appear as the main factors structuring the autotrophic community of Fuente Podrida spring. An erratum to this article is availbale at .  相似文献   

9.
Experimental resin composites with incorporated polytetrafluoroethylene (PTFE) particles were developed, which theoretically could improve the surface properties of the materials, including the inhibition of bacterial adherence. To assess the surface properties in relation to biofilm formation and detachment, 23.1% (wt/wt) linear PTFE particles (FL-30) and cross-linked PTFE particles (FC-30) were incorporated into pure resin composites. Pure PTFE plates and pure resin composites without PTFE (F-0) were used as control specimens. Sucrose-dependent Streptococcus mutans biofilms were formed on the specimen blocks inside an oral biofilm reactor for various time periods and analyzed with or without application of driving forces. In addition, water contact angles and surface roughness were measured. The water contact angles of FL-30 (61.2°) and FC-30 (65.8°) were larger than that of F-0 (48.5°). The largest contact angle (107°) was detected on pure PTFE plates. However, the surfaces of FL-30, FC-30, and pure PTFE plates were rougher than that of F-0. Although the surface properties of the materials differed in terms of contact angles and roughness, these factors seemed not to affect biofilm formation on the surfaces within 5 h. Pure PTFE plates harbored almost the same amounts of biofilm as F-0. However, when a very strong driving force was applied, it was clear that there were significantly smaller amounts of biofilms retained on pure PTFE plates, which showed contact angles much higher than those of the other materials. Hydrophobicity of the resin composite was improved by incorporation of PTFE fillers. However, surface resistance against biofilm formation was not improved.  相似文献   

10.

Uxmal and Tulum are two important Mayan sites in the Yucatan peninsula. The buildings are mainly composed of limestone and grey/black discoloration is seen on exposed walls and copious greenish biofilms on inner walls. The principal microorganisms detected on interior walls at both Uxmal and Tulum were cyanobacteria; heterotrophic bacteria and filamentous fungi were also present. A dark‐pigmented mitosporic fungus and Bacillus cereus, both isolated from Uxmal, were shown to be acidogenic in laboratory cultures. Cyanobacteria belonging to rock‐degrading genera Synechocystis and Gloeocapsa were identified at both sites. Surface analysis previously showed that calcium ions were present in the biofilms on buildings at Uxmal and Tulum, suggesting the deposition of biosolubilized stone. Apart from their potential to degrade the substrate, the coccoid cyanobacteria supply organic nutrients for bacteria and fungi, which can produce organic acids, further increasing stone degradation.  相似文献   

11.
H. seropedicae associates endophytically and epiphytically with important poaceous crops and is capable of promoting their growth. The molecular mechanisms involved in plant colonization by this microrganism are not fully understood. Exopolysaccharides (EPS) are usually necessary for bacterial attachment to solid surfaces, to other bacteria, and to form biofilms. The role of H. seropedicae SmR1 exopolysaccharide in biofilm formation on both inert and plant substrates was assessed by characterization of a mutant in the espB gene which codes for a glucosyltransferase. The mutant strain was severely affected in EPS production and biofilm formation on glass wool. In contrast, the plant colonization capacity of the mutant strain was not altered when compared to the parental strain. The requirement of EPS for biofilm formation on inert surface was reinforced by the induction of eps genes in biofilms grown on glass and polypropylene. On the other hand, a strong repression of eps genes was observed in H. seropedicae cells adhered to maize roots. Our data suggest that H. seropedicae EPS is a structural component of mature biofilms, but this development stage of biofilm is not achieved during plant colonization.  相似文献   

12.
Gravity-driven membrane (GDM) ultrafiltration systems require little maintenance: they operate without electricity at ultra-low pressure in dead-end mode and without control of the biofilm formation. These systems are already in use for water purification in some regions of the world where adequate treatment and distribution of drinking water is not readily available. However, many water bodies worldwide exhibit harmful blooms of cyanobacteria that severely lower the water quality due to the production of toxic microcystins (MCs). We studied the performance of a GDM system during an artificial Microcystis aeruginosa bloom in lake water and its simulated collapse (i.e., the massive release of microcystins) over a period of 21 days. Presence of live or destroyed cyanobacterial cells in the feed water decreased the permeate flux in the Microcystis treatments considerably. At the same time, the microbial biofilms on the filter membranes could successfully reduce the amount of microcystins in the filtrate below the critical threshold concentration of 1 µg L−1 MC for human consumption in three out of four replicates after 15 days. We found pronounced differences in the composition of bacterial communities of the biofilms on the filter membranes. Bacterial genera that could be related to microcystin degradation substantially enriched in the biofilms amended with microcystin-containing cyanobacteria. In addition to bacteria previously characterized as microcystin degraders, members of other bacterial clades potentially involved in MC degradation could be identified.  相似文献   

13.
Carbon removal strategies have gained popularity in the mitigation of biofouling in water reuse processes, but current biofilm-monitoring practices based on organic-carbon concentrations may not provide an accurate representation of the in situ biofilm problem. This study evaluated a submerged microtiter plate assay for direct and rapid monitoring of biofilm formation by subjecting the plates to a continuous flow of either secondary effluent (SE) or biofilter-treated secondary effluent (BF). This method was very robust, based on a high correlation (R2 = 0.92) between the biomass (given by the A600 in the microtiter plate assay) and the biovolume (determined from independent biofilms developed on glass slides under identical conditions) measurements, and revealed that the biomasses in BF biofilms were consistently lower than those in SE biofilms. The influence of the organic-carbon content on the biofilm community composition and succession was further evaluated using molecular tools. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed a group of pioneer colonizers, possibly represented by Sphingomonadaceae and Caulobacter organisms, to be common in both SE and BF biofilms. However, differences in organic-carbon availabilities in the two water samples eventually led to the selection of distinct biofilm communities. Alphaproteobacterial populations were confirmed by fluorescence in situ hybridization to be enriched in SE biofilms, while Betaproteobacteria were dominant in BF biofilms. Cloning analyses further demonstrated that microorganisms adapted for survival under low-substrate conditions (e.g., Aquabacterium, Caulobacter, and Legionella) were preferentially selected in the BF biofilm, suggesting that carbon limitation strategies may not achieve adequate biofouling control in the long run.  相似文献   

14.
Phototrophic biofilms are matrix-enclosed microbial communities, mainly driven by light energy. In this study, the successional changes in community composition of freshwater phototrophic biofilms growing on polycarbonate slides under different light intensities were investigated. The sequential changes in community composition during different developmental stages were examined by denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR)-amplified 16S rRNA gene fragments in conjugation with sequencing and phylogenetic analysis. Biofilm development was monitored with subsurface light sensors. The development of these biofilms was clearly light dependent. It was shown that under high light conditions the initial colonizers of the substratum predominantly consisted of green algae, whereas at low light intensities, heterotrophic bacteria were the initial colonizers. Cluster analysis of DGGE banding patterns revealed a clear correlation in the community structure with the developmental phases of the biofilms. At all light intensities, filamentous cyanobacteria affiliated to Microcoleus vaginatus became dominant as the biofilms matured. It was shown that the initial colonization phase of the phototrophic biofilms is shorter on polycarbonate surfaces precolonized by heterotrophic bacteria.  相似文献   

15.
Bacteria in their natural environments frequently exist as mixed surface-associated communities, protected by extracellular material, termed biofilms. Biofilms formed by the human pathogen Campylobacter jejuni may arise in the gastrointestinal tract of animals but also in water pipes and other industrial situations, leading to their possible transmission into the human food chain either directly or via farm animals. Bacteriophages are natural predators of bacteria that usually kill their prey by cell lysis and have potential application for the biocontrol and dispersal of target bacteria in biofilms. The effects of virulent Campylobacter specific-bacteriophages CP8 and CP30 on C. jejuni biofilms formed on glass by strains NCTC 11168 and PT14 at 37°C under microaerobic conditions were investigated. Independent bacteriophage treatments (n ≥ 3) led to 1 to 3 log10 CFU/cm2 reductions in the viable count 24 h postinfection compared with control levels. In contrast, bacteriophages applied under these conditions effected a reduction of less than 1 log10 CFU/ml in planktonic cells. Resistance to bacteriophage in bacteria surviving bacteriophage treatment of C. jejuni NCTC 11168 biofilms was 84% and 90% for CP8 and CP30, respectively, whereas bacteriophage resistance was not found in similarly recovered C. jejuni PT14 cells. Dispersal of the biofilm matrix by bacteriophage was demonstrated by crystal violet staining and transmission electron microscopy. Bacteriophage may play an important role in the control of attachment and biofilm formation by Campylobacter in situations where biofilms occur in nature, and they have the potential for application in industrial situations leading to improvements in food safety.  相似文献   

16.
Biofilms consist of groups of bacteria attached to surfaces and encased in a hydrated polymeric matrix. Bacteria in biofilms are more resistant to the immune system and to antibiotics than their free-living planktonic counterparts. Thus, biofilm-related infections are persistent and often show recurrent symptoms. The metal chelator EDTA is known to have activity against biofilms of gram-positive bacteria such as Staphylococcus aureus. EDTA can also kill planktonic cells of Proteobacteria like Pseudomonas aeruginosa. In this study we demonstrate that EDTA is a potent P. aeruginosa biofilm disrupter. In Tris buffer, EDTA treatment of P. aeruginosa biofilms results in 1,000-fold greater killing than treatment with the P. aeruginosa antibiotic gentamicin. Furthermore, a combination of EDTA and gentamicin results in complete killing of biofilm cells. P. aeruginosa biofilms can form structured mushroom-like entities when grown under flow on a glass surface. Time lapse confocal scanning laser microscopy shows that EDTA causes a dispersal of P. aeruginosa cells from biofilms and killing of biofilm cells within the mushroom-like structures. An examination of the influence of several divalent cations on the antibiofilm activity of EDTA indicates that magnesium, calcium, and iron protect P. aeruginosa biofilms against EDTA treatment. Our results are consistent with a mechanism whereby EDTA causes detachment and killing of biofilm cells.  相似文献   

17.
Major microorganisms in biofilms on external surfaces of historic buildings are algae, cyanobacteria, bacteria, and fungi. Their growth causes discoloration and degradation. We compared the phototrophs on cement-based renderings and limestone substrates at 14 historic locations (47 sites sampled) in Europe and Latin America. Most biofilms contained both cyanobacteria and algae. Single-celled and colonial cyanobacteria frequently constituted the major phototroph biomass on limestone monuments (32 sites sampled). Greater numbers of phototrophs, and especially of algae and of filamentous morphotypes, were found on cement-based renderings (15 sites), probably owing to the porosity and small pore size of the latter substrates, allowing greater entry and retention of water. All phototrophic groups were more frequent on Latin American than on European buildings (20 and 27 sites, respectively), with cyanobacteria and filamentous phototrophs showing the greatest differences. The results confirm the influence of both climate and substrate on phototroph colonization of historic buildings. Received: 7 March 2002 / Accepted: 8 April 2002  相似文献   

18.
Food webs in the rhithral zone rely mainly on allochthonous carbon from the riparian vegetation. However, autochthonous carbon might be more important in open canopy streams. In streams, most of the microbial activity occurs in biofilms, associated with the streambed. We followed the autochthonous carbon transfer toward bacteria and grazing protozoa within a stream biofilm food web. Biofilms that developed in a second-order stream (Thuringia, Germany) were incubated in flow channels under climate-controlled conditions. Six-week-old biofilms received either 13C- or 12C-labeled CO?, and uptake into phospholipid fatty acids was followed. The dissolved inorganic carbon of the flow channel water became immediately labeled. In biofilms grown under 8-h light/16-h dark conditions, more than 50% of the labeled carbon was incorporated in biofilm algae, mainly filamentous cyanobacteria, pennate diatoms, and nonfilamentous green algae. A mean of 29% of the labeled carbon reached protozoan grazer. The testate amoeba Pseudodifflugia horrida was highly abundant in biofilms and seemed to be the most important grazer on biofilm bacteria and algae. Hence, stream biofilms dominated by cyanobacteria and algae seem to play an important role in the uptake of CO? and transfer of autochthonous carbon through the microbial food web.  相似文献   

19.
The presence of microbial biofilms in the phyllosphere of terrestrial plants has recently been demonstrated, but few techniques to study biofilms associated with living plant tissues are available. Here we report a technique to estimate the proportion of the bacterial population on leaves that is assembled in biofilms and to quantitatively isolate bacteria from the biofilm and nonbiofilm (solitary) components of phyllosphere microbial communities. This technique is based on removal of bacteria from leaves by gentle washing, separation of biofilm and solitary bacteria by filtration, and disintegration of biofilms by ultrasonication. The filters used for this technique were evaluated for their nonspecific retention rates of solitary bacteria and for the efficiency of filtration for different concentrations of solitary bacteria in the presence of biofilms and other particles. The lethality and efficiency of disintegration of the sonication conditions used here were also evaluated. Isolation and quantification of bacteria by this technique is based on use of culture media. However, oligonucleotide probes, sera, or epifluorescent stains could also be used for direct characterization of the biofilm and solitary bacteria in the suspensions generated by this technique. Preliminary results from estimates of biofilm abundance in phyllosphere communities show that bacteria in biofilms constitute between about 10 and 40% of the total bacterial population on broad-leaf endive and parsley leaves.  相似文献   

20.
The sensitivity of nitrifying bacteria to acidic conditions is a well-known phenomenon and generally attributed to the lack and/or toxicity of substrates (NH3 and HNO2) with decreasing pHs. In contrast, we observed strong nitrification at a pH around 4 in biofilms grown on chalk particles and investigated the following hypotheses: the presence of less acidic microenvironments and/or the existence of acid-tolerant nitrifiers. Microelectrode measurements (in situ and under various experimental conditions) showed no evidence of a neutral microenvironment, either within the highly active biofilm colonizing the chalk surface or within a control biofilm grown on a nonbuffering (i.e., sintered glass) surface under acidic pH. A 16S rRNA approach (clone libraries and fluorescence in situ hybridizations) did not reveal uncommon nitrifying (potentially acid-tolerant) strains. Instead, we found a strongly acidic microenvironment, evidence for a clear adaptation to the low pH in situ, and the presence of nitrifying populations related to subgroups with low Kms for ammonia (Nitrosopira spp., Nitrosomonas oligotropha, and Nitrospira spp.). Acid-consuming (chalk dissolution) and acid-producing (ammonia oxidation) processes are equilibrated on a low-pH steady state that is controlled by mass transfer limitation through the biofilm. Strong affinity to ammonia and possibly the expression of additional functions, e.g., ammonium transporters, are adaptations that allow nitrifiers to cope with acidic conditions in biofilms and other habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号