首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Calcium Deposition in Idioblasts of Mulberry Leaves   总被引:4,自引:0,他引:4  
Large, rounded idioblasts were observed in adaxial leaves ofmulberry plants; they were clearly distinguishable from epidermal,trichome and parenchyma cells. The size and density of idioblastsvaried according to leaf age. Cytological features of idioblastswere as follows: the outermost region (‘cap’) ofidioblasts was situated on the adaxial surface as a dome-likeprotrusion; a cylindrical protuberance extended from the capregion to the inner part of the idioblast; in idioblasts frommature leaves a crystal mass was suspended from the lower tipof the cylindrical protuberance. Elemental analysis of idioblastsdemonstrated that silicon (Si) was localized in both the capregion and the cylindrical protuberance but calcium (Ca) waspresent in the large crystal, indicating site-specific cellularlocalization of Ca and Si within an idioblast. Histochemicalassays showed that a distinct Ca crystal filled the vacuolesof idioblasts in mature leaves, while immature leaves had manyidioblasts without Ca deposition. The increase in the Ca contentof leaves was directly proportional to the increase in leafage and appeared to be closely related to the Ca sink capacityof the developing idioblast vacuoles. The maximum sink capacitywas quantified to be approximately 40 ng per idioblast whenmulberry plants were grown hydroponically with excess Ca.Copyright1999 Annals of Botany Company Morus alba, idioblast, Ca deposition, Ca sink capacity, silicon, X-ray microanalysis, histochemistry, scanning electron microscopy.  相似文献   

2.
D C Dixon  J R Cutt    D F Klessig 《The EMBO journal》1991,10(6):1317-1324
Several biochemical and localization studies have shown that the acidic isoforms of the tobacco pathogenesis-related (PR) proteins, PR-1a, -1b and -1c are secreted to the extracellular spaces of leaves in response to pathogen infection or chemical treatment. Here we report the differential accumulation of these proteins within the vacuoles of specialized cells known as crystal idioblasts. In situ hybridization analysis indicated that crystal idioblasts expressed the PR-1 genes at the mRNA level and suggested that PR-1 proteins were synthesized by these cells. Transgenic plants which constitutively express a chimeric gene encoding an acidic PR-1b isoform also accumulated PR-1 protein in the extracellular spaces and within crystal idioblast vacuoles. Analysis of mRNA derived from these transgenic plants indicated that expression of the introduced PR-1b gene was responsible for the accumulation of PR-1 protein in these two distinct locations. The synthesis and accumulation within crystal idioblasts of PR-1 proteins, which are secreted by other cell types, indicates that idioblasts sort these proteins in a unique manner. Moreover, this suggests that protein sorting in higher plants may be modulated in a cell specific manner.  相似文献   

3.
BACKGROUND AND AIMS: Pistia stratiotes produces large amounts of calcium (Ca) oxalate crystals in specialized cells called crystal idioblasts. The potential involvement of Ca(2+) channels in Ca oxalate crystal formation by crystal idioblasts was investigated. METHODS: Anatomical, ultrastructural and physiological analyses were used on plants, fresh or fixed tissues, or protoplasts. Ca(2+) uptake by protoplasts was measured with (45)Ca(2+), and the effect of Ca(2+) channel blockers studied in intact plants. Labelled Ca(2+) channel blockers and a channel protein antibody were used to determine if Ca(2+) channels were associated with crystal idioblasts. KEY RESULTS: (45)Ca(2+) uptake was more than two orders of magnitude greater for crystal idioblast protoplasts than mesophyll protoplasts, and idioblast number increased when medium Ca was increased. Plants grown on media containing 1-50 microM of the Ca(2+) channel blockers, isradipine, nifedipine or fluspirilene, showed almost complete inhibition of crystal formation. When fresh tissue sections were treated with the fluorescent dihydropyridine-type Ca(2+) channel blocker, DM-Bodipy-DHP, crystal idioblasts were intensely labelled compared with surrounding mesophyll, and the label appeared to be associated with the plasma membrane and the endoplasmic reticulum, which is shown to be abundant in idioblasts. An antibody to a mammalian Ca(2+) channel alpha1 subunit recognized a single band in a microsomal protein fraction but not soluble protein fraction on western blots, and it selectively and heavily labelled developing crystal idioblasts in tissue sections. CONCLUSIONS: The results demonstrate that Ca oxalate crystal idioblasts are enriched, relative to mesophyll cells, in dihydropyridine-type Ca(2+) channels and that the activity of these channels is important to transport and accumulation of Ca(2+) required for crystal formation.  相似文献   

4.
L-Ascorbic acid (AsA) and its metabolic precursors give rise to oxalic acid (OxA) found in calcium oxalate crystals in specialized crystal idioblast cells in plants; however, it is not known if AsA and OxA are synthesized within the crystal idioblast cell or transported in from surrounding mesophyll cells. Isolated developing crystal idioblasts from Pistia stratiotes were used to study the pathway of OxA biosynthesis and to determine if idioblasts contain the entire path and are essentially independent in OxA synthesis. Idioblasts were supplied with various (14)C-labeled compounds and examined by micro-autoradiography for incorporation of (14)C into calcium oxalate crystals. [(14)C]OxA gave heavy labeling of crystals, indicating the isolated idioblasts are functional in crystal formation. Incubation with [1-(14)C]AsA also gave heavy labeling of crystals, whereas [6-(14)C]AsA gave no labeling. Labeled precursors of AsA (L-[1-(14)C]galactose; D-[1-(14)C]mannose) also resulted in crystal labeling, as did the ascorbic acid analog, D-[1-(14)C]erythorbic acid. Intensity of labeling of isolated idioblasts followed the pattern OxA > AsA (erythorbic acid) > L-galactose > D-mannose. Our results demonstrate that P. stratiotes crystal idioblasts synthesize the OxA used for crystal formation, the OxA is derived from the number 1 and 2 carbons of AsA, and the proposed pathway of ascorbic acid synthesis via D-mannose and L-galactose is operational in individual P. stratiotes crystal idioblasts. These results are discussed with respect to fine control of calcium oxalate precipitation and the concept of crystal idioblasts as independent physiological compartments.  相似文献   

5.
Leaf tissues of plants usually contain several types of idioblasts, defined as specialized cells whose shape and contents differ from the surrounding homogeneous cells. The spatial patterning of idioblasts, particularly of trichomes and guard cells, across the leaf epidermis has received considerable attention as it offers a useful biological model for studying the intercellular regulation of cell fate and patterning. Excretory idioblasts in the leaves of the aquatic monocotyledonous plant Egeria densa produced light blue autofluorescence when irradiated with ultraviolet light. The use of epifluorescence microscopy to detect this autofluorescence provided a simple and convenient method for detecting excretory idioblasts and allowed tracking of those cells across the leaf surfaces, enabling quantitative measurement of the clustering and spacing patterns of idioblasts at the whole leaf level. Occurrence of idioblasts was coordinated along the proximal–distal, medial–lateral, and adaxial–abaxial axes, producing a recognizable consensus spatial pattern of idioblast formation among fully expanded leaves. Idioblast clusters, which comprised up to nine cells aligned along the proximal–distal axis, showed no positional bias or regularity in idioblast-forming areas when compared with singlet idioblasts. Up to 75% of idioblasts existed as clusters on every leaf side examined. The idioblast-forming areas varied between leaves, implying phenotypic plasticity. Furthermore, in young expanding leaves, autofluorescence was occasionally detected in a single giant vesicle or else in one or more small vesicles, which eventually grew to occupy a large portion of the idioblast volume as a central vacuole. Differentiation of vacuoles by accumulating the fluorescence substance might be an integral part of idioblast differentiation. Red autofluorescence from chloroplasts was not detected in idioblasts of young expanding leaves, suggesting idioblast differentiation involves an arrest in chloroplast development at a very early stage, rather than transdifferentiation of chloroplast-containing epidermal cells.  相似文献   

6.
The ultrastructure of druse crystal idioblasts in palo verde leaves is similar in certain aspects to other crystal-containing idioblasts, but also displays several notable differences. Although the crystal itself is dissolved during the preparative procedure, the druse idioblast is readily observable. The large crystal is contained in a tightly appressed vacuole in the center of the idioblast. Between the crystal vacuole and the cell wall there is a narrow stalk-like connection which has the same substructure and staining characteristics as cell wall material. The membrane of this crystal vacuole and the idioblast plasmalemma stain asymmetrically, while other cellular membranes in the idioblast appear symmetrical. Much of the remaining cell volume is occupied by a ramified vacuome and a peripherally displaced nucleus. The plastids of the druse idioblast are markedly different from chloroplasts in adjacent parenchyma cells. The former lack the size, starch grains, and well-developed grana of the latter. Idioblast mitochondria are similar in quantity and appearance to those of palisade cells, except for a greater number of cristae in the former. Dictyosomes, while rare in mesophyll cells, are quite common in the idioblast. These features suggest that the druse crystal idioblast is metabolically active and not dead at maturity.  相似文献   

7.
Background and Aims: Species of Araceae accumulate calcium oxalate in the form ofcharacteristically grooved needle-shaped raphide crystals andmulti-crystal druses. This study focuses on the distributionand development of raphides and druses during leaf growth inten species of Amorphophallus (Araceae) in order to determinethe crystal macropatterns and the underlying ultrastructuralfeatures associated with formation of the unusual raphide groove. Methods: Transmission electron microscopy (TEM), scanning electron microscopy(SEM) and both bright-field and polarized-light microscopy wereused to study a range of developmental stages. Key Results: Raphide crystals are initiated very early in plant development.They are consistently present in most species and have a fairlyuniform distribution within mature tissues. Individual raphidesmay be formed by calcium oxalate deposition within individualcrystal chambers in the vacuole of an idioblast. Druse crystalsform later in the true leaves, and are absent from some species.Distribution of druses within leaves is more variable. Drusesinitially develop at leaf tips and then increase basipetallyas the leaf ages. Druse development may also be initiated incrystal chambers. Conclusions: The unusual grooved raphides in Amorphophallus species probablyresult from an unusual crystal chamber morphology. There aremultiple systems of transport and biomineralization of calciuminto the vacuole of the idioblast. Differences between raphideand druse idioblasts indicate different levels of cellular regulation.The relatively early development of raphides provides a defensivefunction in soft, growing tissues, and restricts build-up ofdangerously high levels of calcium in tissues that lack theability to adequately regulate calcium. The later developmentof druses could be primarily for calcium sequestration.  相似文献   

8.
9.
A. P. Kausch  H. T. Horner 《Planta》1985,164(1):35-43
Three peroxisomal enzymes, glycolate oxidase, urate oxidase and catalase were localized cytochemically in Psychotria punctata (Rubiaceae) leaves and Yucca torreyi (Agavaceae) seedling root tips, both of which contain developing and mature calcium-oxalate raphide crystal idioblasts. Glycolate-oxidase (EC 1.1.3.1) and catalase (EC 1.11.1.6) activities were present within leaftype peroxisomes in nonidioblastic mesophyll cells in Psychotria leaves, while urate-oxidase (EC 1.7.3.3) activity could not be conclusively demonstrated in these organelles. Unspecialized peroxisomes in cortical parenchyma of Yucca roots exhibited activities of all three enzymes. Reactionproduct deposits attributable to glycolate-oxidase activity were never observed in peroxisomes of any developing or mature crystal idioblasts of Psychotria or Yucca. Catalase localization indicates that idioblast microbodies are functional peroxisomes. The apparent absence of glycolate oxidase in crystal idioblasts of Psychotria and Yucca casts serious doubt that pathways involving this enzyme are operational in the synthesis of the oxalic acid precipitated as calcium-oxalate crystals in these cells.Abbreviations AMPD 2-amino-2-methyl-1,3-propandiol - CTEM conventional transmission electron microscopy - DAB 3,3-diaminobenzidine tetrahydrochloride - HVEM high-voltage electron microscopy  相似文献   

10.
Summary. Although calcium carbonate is known to be a common biomineral in plants, very little attention has been given to the biological control of calcium carbonate deposition. In mulberry leaves, a subcellular structure is involved in mineral deposition and is described here by a variety of cytological techniques. Calcium carbonate was deposited in large, rounded idioblast cells located in the upper epidermal layer of mulberry leaves. Next to the outmost region (“cap”) of young idioblasts, we found that the inner cell wall layer expanded to form a peculiar outgrowth, named cell wall sac in this report. This sac grew and eventually occupied the entire apoplastic space of the idioblast. Inside the mature cell wall sac, various cellulosic membranes developed and became the major site of Ca carbonate deposition. Concentrated Ca2+ was pooled in the peripheral zone, where small Ca carbonate globules were present in large numbers. Large globules were tightly packed among multiple membranes in the central zone, especially in compartments formed by cellulosic membranes and in their neighboring membranes. The maximum Ca sink capacity of a single cell wall sac was quantified using enzymatically isolated idioblasts as approximately 48 ng. The newly formed outgrowth in idioblasts is not a pure calcareous body but a complex cell wall structure filled with substantial amounts of Ca carbonate crystals. Correspondence and reprints: Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido, Matsugasaki, Sakyo, Kyoto 606-8585, Japan.  相似文献   

11.
Calreticulin (CRT) is a calcium-binding protein in the endoplasmic reticulum (ER) with an established role as a molecular chaper-one. An additional function in signal transduction, specifically in calcium distribution, is suggested but not proven. We have analyzed the expression pattern of Arabidopsis thaliana CRTs for a comparison with these proposed roles. Three CRT genes were expressed, with identities of the encoded proteins ranging from 54 to 86%. Protein motifs with established functions found in CRTs of other species were conserved. CRT was found in all of the cells in low amounts, whereas three distinct floral tissues showed abundant expression: secreting nectaries, ovules early in development, and a set of subepidermal cells near the abaxial surface of the anther. Localization in the developing endosperm, which is characterized by high protein synthesis rates, can be reconciled with a specific chaperone function. Equally, nectar production and secretion, a developmental stage marked by abundant ER, may require abundant CRT to accommodate the traffic of secretory proteins through the ER. Localization of CRT in the anthers, which are degenerating at the time of maximum expression of CRT, cannot easily be reconciled with a chaperone function but may indicate a role for CRT in anther maturation or dehiscence.  相似文献   

12.
Longitudinal files of raphide crystal idioblasts form within the cortical meristematic region of Vanilla planifolia aerial roots. Cell and nuclear enlargement occur gradually throughout idioblast development and nuclear diameter approximates idioblast maturity. Cytophotometric determination of nuclear DNA (Feulgen) contents, measured by the two-wavelength method, revealed that all cortical parenchyma cells are diploid (2C = 6.3 pg), whereas all crystal idioblast nuclei are endopolyploid. Idioblast nuclear DNA content ranged from 4C to 32C (106 pg) and averaged 5.9 times that of parenchyma telophase nuclei. Frequency distribution of individual DNA content measurements depicts multiple genomes (increasing with geometric periodicity) to the 8C level, followed by less strict DNA replication within the crystal idioblast genome. The largest nuclei had the highest DNA content. Endomitotic stages of preprophasic heterochromatic dispersion (Z phase) and partial prophasic chromosomal coiling are observed with light and electron microscopy. DNA content values above the 8C level do not fit the geometrical order which is found if the total genome is replicated during each endo-cycle, a result indicating differential DNA replication. Chromocenter counts substantiate the occurrence of endomitosis to the 8C level and suggest heterochromatin underreplication in higher endopolyploid idioblast nuclei. Possible relationships between observed cytological events of idioblast development and nuclear condition are discussed.  相似文献   

13.
TILTON  V. R.; HORNER  H. T.  JR. 《Annals of botany》1980,46(5):533-539
Crystalliferous idioblasts commonly are found in groups of twoor three cells in the peripheral region of the carpels Crystals,composed of calcium oxalate, usually are m well-organized bundleswhich develop within a matrix of protein and carbohydrate inthe vacuole of each idioblast The matrix occurs around and betweenindividual crystal chambers and contains spheres and tubules5.4 nm in diameter The matrix changes in character and locationwith age Crystals form within their own individual chambers,each comprised of a series of lamellae The number of lamellaeis variable The innermost lamella is different from the othersin that it is apparently continuous The other lamellae are platelikeand superficially resemble successive periderms. The lamellaemay begin and/or terminate abruptly or they may anastamose Eachlamella is composed of chains of spheres about 6 1 nm in diameterand is separated from adjacent lamellae by tubules 5.4 nm indiameter Both the crystals and slime body are absorbed duringlater stages of carpel maturation. Ornithogalum caudatum Ait carpel, calcium oxalate, idioblasts, ultrastructure  相似文献   

14.
15.
16.
This study reports the cloning, expression analysis and localization of calreticulin (CRT) in the endoplasmic reticulum (ER) during late oogenesis and early embryogenesis of the insect Rhodnius prolixus. CRT was cloned and sequenced from cDNA extracted from unfertilized eggs. Real-time PCR showed that CRT expression remains at lower levels during late oogenesis when compared to vitellogenic oocytes or day 0 laid fertilized eggs. Immunofluorescence microscopy showed that this protein is located in the periphery of the egg, in a differential peripheral ooplasm surrounding the yolk-rich internal ooplasm, only identified by transmission electron microscopy (TEM) of thin sections. Using immunogold electron microscopy, the ER ultrastructure (CRT labeled) was identified in the peripheral ooplasm as dispersed lamellae, randomly distributed in the peripheral ooplasm. No massive alterations of ER ultrastructure were found before or right after (30 min) fertilization, but an increase in CRT expression levels and assembly of typical rough ER (parallel cisternae with associated ribosomes) were observed 18–24 h after oviposition. The lack of ER assembly at fertilization and the later formation of rough ER together with the increase in CRT expression levels, suggest that the major functions of ER might be of great importance during the early events of development. The possible involvement of ER in the early steps of embryogenesis will be discussed.  相似文献   

17.
For most secretory pathway proteins, crossing the endoplasmic reticulum (ER) membrane is an irreversible process. However, in some cases this flow can be reversed. For instance, misfolded proteins retained in the ER are retrotranslocated to the cytosol to be degraded by the proteasome. This mechanism, known as ER associated degradation (ERAD), is exploited by several bacterial toxins to gain access to the cytosol. Interestingly, some ER resident proteins can also be detected in the cytosol or nucleus, calreticulin (CRT) being the most studied. Here we show that in Trypanosoma cruzi a minor fraction of CRT localized to the cytosol. ER calcium depletion, but not increasing cytosolic calcium, triggered the retrotranslocation of CRT in a relatively short period of time. Cytosolic CRT was subsequently degraded by the proteasome. Interestingly, the single disulfide bridge of CRT is reduced when the protein is located in the cytosol. The effect exerted by ER calcium was strictly dependent on the C-terminal domain (CRT-C), since a CRT lacking it was totally retained in the ER, whereas the localization of an unrelated protein fused to CRT-C mirrored that of endogenous CRT. This finding expands the regulatory mechanisms of protein sorting and may represent a new crossroad between diverse physiological processes.  相似文献   

18.
Summary Crystal idioblasts are cells which are specialized for accumulation of Ca2+ as a physiologically inactive, crystalline salt of oxalic acid. Using microautoradiographic, immunological, and ultrastructural techniques, the process of raphide crystal growth, and how crystal growth is coordinated with cell growth, was studied in idioblasts ofPistia stratiotes. Incorporation of45Ca2+ directly demonstrated that, relative to surrounding mesophyll cells, crystal idioblasts act as high-capacity Ca2+ sinks, accumulating large amounts of Ca2+ within the vacuole as crystals. The pattern of addition of Ca2+ during crystal growth indicates a highly regulated process with bidirectional crystal growth. In very young idioblasts,45Ca2+ is incorporated along the entire length of the needle-shaped raphide crystals, but as they mature incorporation only occurs at crystal tips in a bidirectional mode. At full maturity, the idioblast stops Ca2+ uptake, although the cells are still alive, demonstrating an ability to strictly regulate Ca transport processes at the plasma membrane. In situ hybridization for ribosomal RNA shows young idioblasts are extremely active cells, are more active than older idioblasts, and have higher general activity than surrounding mesophyll cells. Polarizing and scanning electron microscopy demonstrate that the crystal morphology changes as crystals develop and includes morphological polarity and an apparent nucleation point from which crystals grow bidirectionally. These results indicate a carefully regulated process of biomineralization in the vacuole. Finally, we show that the cytoskeleton is important in controlling the idioblast cell shape, but the regulation of crystal growth and morphology is under a different control mechanism.Abbreviation SEM scanning electron microscopy  相似文献   

19.
Calreticulin (CRT) from vertebrates is a calcium-binding protein present mainly in the endoplasmic reticulum (ER). There, it directs the conformation of proteins and controls calcium levels. This review will focus on several extracellular roles of Trypanosoma cruzi CRT (TcCRT) in relation to its capacity to inhibit the complement system, mediate parasite infectivity, interfere with angiogenesis and, as a possible consequence, with tumor growth. The TcCRT antiangiogenic effect parallels with the capacity of T. cruzi infection to inhibit tumor development in vivo. Thus, the TcCRT, complement, and endothelial cell interactions seem to be an evolutionary adaptation to promote prolonged parasite-host relationships.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号