首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

2.
Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves.  相似文献   

3.
In transgenic plants, for many applications it is important that the inserted genes are expressed in a tissue-specific manner. This in turn could help better understanding their roles in plant development. Germin-like proteins (GLPs) play diverse roles in plant development and defense responses. In order to understand the functions and regulation of the GLP13 gene, its promoter (762 bp) was cloned and fused with a β-glucuronidase (GUS) reporter gene for transient expression in Arabidopsis thaliana and tobacco (Nicotiana tabacum cv. K326). Histochemical analysis of the transgenic plants showed that GUS was specifically expressed in vascular bundles predominantly in phloem tissue of all organs in Arabidopsis. Further analyses in transgenic tobacco also identified similar GUS expression in the vascular bundles.  相似文献   

4.
5.
Suzuki A  Audet C  Oaks A 《Plant physiology》1987,84(3):578-581
The ferredoxin (Fd)-dependent glutamate synthase (EC 1.4.7.1) and NADH-dependent glutamate synthase (EC 1.4.1.14) activities are carried out by two immunochemically distinct enzyme proteins in maize leaves (Zea mays W64A and W182E). Continuous irradiation of etiolated tissue at 75 micro einsteins per square meter per second for 24 hours resulted in a 3-fold increase on a fresh weight basis in the activity of the Fd-dependent glutamate synthase and a slight decrease in the activity of the NADH-dependent enzyme. There was also a significant increase of the Fd-glutamate synthase protein during greening of etiolated tissue.  相似文献   

6.
Transgenic solutions are being widely explored to develop huanglongbing (HLB) resistance in citrus. A critical component of a transgenic construct is the promoter, which determines tissue specificity and level of target gene expression. This study compares the characteristics of five promoters regulating the beta-glucuronidase (GUS) reporter gene in the trifoliate hybrid rootstock US-802. Two of the selected promoters direct high levels of constitutive transgene expression in other dicotyledonous plants: 2X35S, the tandem-repeat promoter of the cauliflower mosaic virus 35S gene and bul409S, a truncation of the potato polyubiquitin promoter. Because Candidatus Liberibacter, the Gram-negative bacterium associated with HLB, infects only the phloem tissue, it may be advantageous to limit transgene expression to the vascular tissue and reduce expression in the fruit. Thus, we also tested three promoters that demonstrate phloem specificity when transformed and expressed in other plants: WDV, from wheat dwarf geminivirus; AtSUC2, the sucrose-H+ symporter gene promoter from Arabidopsis; and CsSUS, the sucrose synthase promoter from citrus. Histochemical staining for GUS activity was observed throughout leaf and stem tissues for the constitutive promoters, while the three phloem-specific promoters largely showed the expected tissue-specific staining. Expression of GUS in some individual transformants with promoters CsSUS and WDV appeared leaky, with some laminar tissue staining. Relative quantification of qRT-PCR data revealed a wide range of mRNA abundance from transgenics with each of the five promoters. Fluorometry also revealed that GUS activity differed depending on the promoter used, but mRNA levels and enzyme activity were not highly correlated.  相似文献   

7.
Transgenic tobacco plants were generated carrying a rice homeobox gene,OSH1, controlled by the promoter of a gene encoding a tobacco pathogenesis-related protein (PR1a). These lines were morphologically abnormal, with wrinkled and/or lobed leaves. Histological analysis of shoot apex primordia indicated arrest of lateral leaf blade expansion, often resulting in asymmetric and anisotropic growth of leaf blades. Other notable abnormalities included abnormal or arrested development of leaf lateral veins. Interestingly,OSH1 expression was undetectable in mature leaves with the aberrant morphological features. Thus,OSH1 expression in mature leaves is not necessary for abnormal leaf development. Northern blot and in situ hybridization analyses indicate thatPR1a-OSH1 is expressed only in the shoot apical meristem and in very young leaf primordia. Therefore, the aberrant morphological features are an indirect consequence of ectopicOSH1 gene expression. The only abnormality observed in tissues expressing the transgene was periclinal (rather than anticlinal) division in mesophyll cells during leaf blade initiation. This generates thicker leaf blades and disrupts the mesophyll cell layers, from which vascular tissues differentiate. TheOSH1 product appears to affect the mechanism controlling the orientation of the plane of cell division, resulting in abnormal periclinal division of mesophyll cell, which in turn results in the gross morphological abnormalities observed in the transgenic lines.  相似文献   

8.
9.
10.
11.
NADP-malic enzyme (NADP-ME) and phosphoenolpyruvate carboxykinase(PCK) are specifically expressed in bundle sheath cells (BSCs)in NADP-ME-type and PCK-type C4 plants, respectively. Unlikethe high activities of these enzymes in the green leaves ofC4 plants, their low activities have been detected in the leavesof C3 plants. In order to elucidate the differences in the geneexpression system between C3 and C4 plants, we have producedchimeric constructs with the ß-glucuronidase (GUS)reporter gene under the control of the maize NADP-Me (ZmMe)or Zoysia japonica Pck (ZjPck) promoter and introduced theseconstructs into rice. In leaves of transgenic rice, the ZmMepromoter directed GUS expression not only in mesophyll cells(MCs) but also in BSCs and vascular cells, whereas the ZjPckpromoter directed GUS expression only in BSCs and vascular cells.Neither the ZjPck nor ZmMe promoters induced GUS expressiondue to light. In rice leaves, the endogenous NADP-Me (OsMe1)was expressed in MCs, BSCs and vascular cells, whereas the ricePck (OsPck1) was expressed only in BSCs and vascular cells.Taken together, the results obtained from transgenic rice demonstratethat the expression pattern of ZmMe or ZjPck in transgenic ricewas reflected by that of its counterpart gene in rice. (Received August 8, 2004; Accepted February 20, 2005 )  相似文献   

12.
A putative promoter fragment of a Pinus radiata gene encoding a multi-functional O-methyltransferase (AEOMT) was isolated from genomic DNA. Sequence analysis revealed a number of putative cis elements, including AC-rich motifs common in promoters of genes related to the phenylpropanoid pathway. The isolated promoter was fused to the GUS reporter gene and its expression profile analyzed in transgenic tobacco and in transient transformation experiments with P. radiata embryogenic and xylogenic tissue. The promoter conferred weak expression in embryogenic tissue but caused strong GUS activity in both ray parenchyma cells and developing tracheary elements of xylem strips. Histochemical analysis in transgenic tobacco plants revealed that the AEOMT promoter induced GUS expression in cell types associated with lignification, such as developing vessels, phloem and wood fibers and xylem parenchyma as well as in non-lignifying phloem parenchyma. The isolated promoter was activated by challenge of the tissue with a fungal pathogen. Our results also indicate that the control of lignin-related gene expression is conserved and can be compared in evolutionarily distant species such as tobacco and pine.  相似文献   

13.
Phytochromes are red‐ and far red light photoreceptors in higher plants. Rice (Oryza sativa L.) has three phytochromes (phyA, phyB and phyC), which play distinct as well as cooperative roles in light perception. To gain a better understanding of individual phytochrome functions in rice, expression patterns of three phytochrome genes were characterized using promoter‐GUS fusion constructs. The phytochrome genes PHYA and PHYB showed distinct patterns of tissue‐ and developmental stage‐specific expression in rice. The PHYA promoter‐GUS was expressed in all leaf tissues in etiolated seedlings, while its expression was restricted to vascular bundles in expanded leaves of light‐grown seedlings. These observations suggest that light represses the expression of the PHYA gene in all cells except vascular bundle cells in rice seedlings. Red light was effective, but far red light was ineffective in gene repression, and red light‐induced repression was not observed in phyB mutants. These results indicate that phyB is involved in light‐dependent and tissue‐specific repression of the PHYA gene in rice.  相似文献   

14.
Summary To establish a genetic system for dissection of light-mediated signal transduction in plants, we analyzed the light wavelengths and promoter sequences responsible for the light-induced expression of the Arabidopsis thaliana chalcone synthase (CHS) promoter fused to the -glucuronidase (GUS) marker gene. Transgenic A. thaliana lines carrying 1975, 523, 186, and 17 by of the CHS promoter fused to the GUS gene were generated, and the expression of these chimeric genes was monitored in response to high intensity light in mature plants and to different wavelengths of light in seedlings. Fusion constructs containing 1975 and 523 by of CHS promoter sequence behaved identically to the endogenous CHS gene under all conditions. Expression of these constructs was induced specifically in response to high intensity white light and blue light. The response to blue light was seen in the presence of the Pfr form of phytochrome. Fusion constructs containing 186 by of promoter sequence showed reduced basal levels of expression and only weak stimulation by blue light but were induced significantly by high intensity white light. These analyses showed that the expression of the A. thaliana CHS gene is responsive to a specific blue light receptor and that sequences between — 523 and — 186 by are required for optimal basal and blue light-induced expression of this gene. The experiments lay the foundation for a simple genetic screen for light response mutants.  相似文献   

15.
Light is an important environmental regulator of diverse growth and developmental processes in plants. However, the mechanisms by which light quality regulates root growth are poorly understood. We analyzed lateral root (LR) growth of tobacco seedlings in response to three kinds of light qualities (red, white, and blue). Primary (1°) LR number and secondary (2°) LR density were elevated under red light (on days 9 and 12 of treatment) in comparison with white and blue lights. Higher IAA concentrations measured in roots and lower in leaves of plants treated with red light suggest that red light accelerated auxin transport from the leaves to roots (in comparison with other light qualities). Corroborative evidence for this suggestion was provided by elevated DR5::GUS expression levels at the shoot/root junction and in the 2° LR region. Applications of N-1-naphthylphthalamic acid (NPA) to red light-treated seedlings reduced both 1° LR number and 2° LR density to levels similar to those measured under white light; DR5::GUS expression levels were also similar between these light qualities after NPA application. Results were similar following exogenous auxin (NAA) application to blue light-treated seedlings. Direct [3H]IAA transport measurement indicated that the polar auxin transport from shoot to root was increased by red light. Red light promoted PIN3 expression levels and blue light reduced PIN1, 34 expression levels in the shoot/root junction and in the root, indicating that these genes play key roles in auxin transport regulation by red and blue lights. Overall, our findings suggest that three kinds of light qualities regulate LR formation in tobacco seedlings through modification of auxin polar transport.  相似文献   

16.
17.
18.
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号