首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-Linked xylose is a major component of xyloglucans in the cell walls of higher plants. An α-xylosidase (AxlA) was purified from a commercial enzyme preparation from Aspergillus niger, and the encoding gene was identified. The protein is a member of glycosyl hydrolase family 31. It was active on p-nitrophenyl-α-d-xyloside, isoprimeverose, xyloglucan heptasaccharide (XXXG), and tamarind xyloglucan. When expressed in Pichia pastoris, AxlA had activity comparable to the native enzyme on pNPαX and IP despite apparent hyperglycosylation. The pH optimum of AxlA was between 3.0 and 4.0. AxlA together with β-glucosidase depolymerized xyloglucan heptasaccharide. A combination of AxlA, β-glucosidase, xyloglucanase, and β-galactosidase in the optimal proportions of 51:5:19:25 or 59:5:11:25 could completely depolymerize tamarind XG to free Glc or Xyl, respectively. To the best of our knowledge, this is the first characterization of a secreted microbial α-xylosidase. Secreted α-xylosidases appear to be rare in nature, being absent from other tested commercial enzyme mixtures and from the genomes of most filamentous fungi.  相似文献   

2.
Bacteroides fragilis is a clinically important anaerobic pathogen present in the human gastrointestinal tract and is involved in a high number of anaerobic peritoneal infections. The complete genome sequence of B. fragilis NCTC 9343 revealed the presence of several putative fucosyltransferase gene homologues known as alpha-1,3-fucosyltransferases (α-1,3-FucTs). However, their expression and functional activities have not been studied. Here, we report the molecular cloning, functional expression, and characterization of the alpha-1,3-fucosyltransferase 3 (α-1,3-FucT3) enzyme from B. fragilis NCTC 9343. The polymerase chain reaction (PCR)-based approach was used to clone the 331 amino acid long (MW, ~39 kDa) PCR product encoding fucosyltransferase enzyme. The enzyme had low identity of 30–40% with other known α-1,3-FucTs from Azospirillum sp, Rickettsia bellii, and different strains of Helicobacter pylori. An in vitro enzyme reaction analysis showed the ability of the enzyme to transfer the fucose moiety from guanosine-5′-diphosphate β-l-fucose to the N-acetyllactosamine to produce Lewis X. The reaction product, Lewis X was confirmed by thin layer chromatography, liquid chromatography-mass spectroscopy, and 1H-nuclear magnetic resonance analyses.  相似文献   

3.
Although core α1,6-fucosylation is commonly observed in N-glycans of both vertebrates and invertebrates, the responsible enzyme, α1,6-fucosyltransferase, has been much less characterized in invertebrates compared to vertebrates. To investigate the functions of α1,6-fucosyltransferase in insects, we cloned the cDNA for the α1,6-fucosyltransferase from Bombyx mori (Bmα1,6FucT) and characterized the recombinant enzyme prepared using insect cell lines. The coding region of Bmα1,6FucT consists of 1737 bp that code for 578 amino acids of the deduced amino acid sequence, showing significant similarity to other α1,6-fucosyltransferases. Enzyme activity assays demonstrated that Bmα1,6FucT is enzymatically active in spite of being less active compared to the human enzyme. The findings also indicate that Bmα1,6FucT, unlike human enzyme, is N-glycosylated and forms a disulfide-bonded homodimer. These findings contribute to a better understanding of roles of α1,6-fucosylation in invertebrates and also to the development of the more efficient engineering of N-glycosylation of recombinant glycoproteins in insect cells.  相似文献   

4.
The gene encoding a family-57-like α-amylase in the hyperthermophilic archaeonMethanococcus jannaschii, has been cloned intoEscherichia coli. Extremely thermoactive α-amylase was confirmed in partially purified enzyme solution of the recombinant culture. This enzyme activity had a temperature optimum of 120°C and a pH optimum 5.0–8.0. The amylase activity is extremely stable against denaturants. Hydrolysis of large sugar polymers with α-1–6 and α-1–4 linkages yields products including glucose polymers of 1–7 units. Highest activity is exhibited on amylose. The catalyst exhibited a half-life of 50 h at 100°C, among the highest reported thermostabilities of natural amylases.  相似文献   

5.
6.
Glycoproteins from the ruminant helminthic parasite Haemonchus contortus react with Lotus tetragonolobus agglutinin and Wisteria floribunda agglutinin, which are plant lectins that recognize α1,3-fucosylated GlcNAc and terminal β-GalNAc residues, respectively. However, parasite glycoconjugates are not reactive with Ricinus communis agglutinin, which binds to terminal β-Gal, and the glycoconjugates lack the Lewis x (Lex) antigen or other related fucose-containing antigens, such as sialylated Lex, Lea, Leb Ley, or H-type 1. Direct assays of parasite extracts demonstrate the presence of an α1,3-fucosyltransferase (α1,3FT) and β1,4-N-acetylgalactosaminyltransferase (β1,4GalNAcT), but not β1,4-galactosyltransferase. The H. contortus α1,3FT can fucosylate GlcNAc residues in both lacto-N-neotetraose (LNnT) Galα1→4GlcNAcβ1→3Galβ1→4Glc to form lacto-N-fucopentaose III Galβ1→ 4[Fucα1→3]GlcNAcβ1→3Galβ1→4Glc, which contains the Lex antigen, and the acceptor lacdiNAc (LDN) GalNAcβ1→4GlcNAc to form GalNAcβ1→4[Fucα1 →3]GlcNAc. The α1,3FT activity towards LNnT is dependent on time, protein, and GDP-Fuc concentration with a Km 50 μ M and a Vmax of 10.8 nmol-mg?1 h?1. The enzyme is unusually resistant to inhibition by the sulfhydryl-modifying reagent N-ethylmaleimide. The α1,3FT acts best with type-2 glycan acceptors (Galβ1→4GlcNAcβ1-R) and can use both sialylated and non-sialylated acceptors. Thus, although in vitro the H. contortus α1,3FT can synthesize the Lex antigen, in vivo the enzyme may instead participate in synthesis of fucosylated LDN or related structures, as found in other helminths.  相似文献   

7.
Previous studies have shown that both αA- and αB-crystallins bind Cu2+, suppress the formation of Cu2+-mediated active oxygen species, and protect ascorbic acid from oxidation by Cu2+. αA- and αB-crystallins are small heat shock proteins with molecular chaperone activity. In this study we show that the mini-αA-crystallin, a peptide consisting of residues 71-88 of αA-crystallin, prevents copper-induced oxidation of ascorbic acid. Evaluation of binding of copper to mini-αA-crystallin showed that each molecule of mini-αA-crystallin binds one copper molecule. Isothermal titration calorimetry and nanospray mass spectrometry revealed dissociation constants of 10.72 and 9.9 μM, respectively. 1,1'-Bis(4-anilino)naphthalene-5,5'-disulfonic acid interaction with mini-αA-crystallin was reduced after binding of Cu2+, suggesting that the same amino acids interact with these two ligands. Circular dichroism spectrometry showed that copper binding to mini-αA-crystallin peptide affects its secondary structure. Substitution of the His residue in mini-αA-crystallin with Ala abolished the redox-suppression activity of the peptide. During the Cu2+-induced ascorbic acid oxidation assay, a deletion mutant, αAΔ70-77, showed about 75% loss of ascorbic acid protection compared to the wild-type αA-crystallin. This difference indicates that the 70-77 region is the primary Cu2+-binding site(s) in human native full-size αA-crystallin. The role of the chaperone site in Cu2+ binding in native αA-crystallin was confirmed by the significant loss of chaperone activity by the peptide after Cu2+ binding.  相似文献   

8.
A soil isolate of Bacillus stearothermophilus was found to synthesize thermostable alpha-amylase. The enzyme was purified to homogeneity by ammonium sulfate fractionation and IECC on DEAE-cellulose column. The purified enzyme was considered to be a monomeric protein with a molar mass of 64 kDa, as determined by SDS-PAGE. The enzyme showed a wide range of pH tolerance and maximum activity at pH 7.0. The temperature tolerance was up to 100 degrees C with more than 90% catalytic activity; the maximum activity was observed at 50 degrees C. Divalent metal ions exhibited inhibitory effect on the enzyme activity. However, proteinase inhibitor did not react positively.  相似文献   

9.
A new polymorph α of indiplon was discovered, initially prepared by two methods, and further characterized by various means including single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), variable temperature powder X-ray diffraction (VT-PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), Fourier transform Raman (FT-Raman) spectroscopy and solubility determination. The crystal structure of Form α as analyzed by SCXRD differ from the three previously reported polymorphs, Form I, II, and III. In addition, PXRD and solubility measurements could clearly distinguish between Form α and Form I. Slight differences between the two forms were also detected by FT-Raman. No differences between Form α and I were observed by DSC, which was explained by VT-PXRD results showing a solid-solid phase change from Form α to Form I during the heating process. Solubility measurements at various temperatures showed that the two polymorphs were mutually monotropic and that Form I was the relatively thermodynamically stable crystal form.  相似文献   

10.
The acceptor specificity and general properties of a Lewis blood-group gene associated -3/4-L-fucosyltransferase isolated from human milk have been examined at the penultimate purification stage involving affinity chromatography on GDP-hexanolamine Sepharose, and after a subsequent gel filtration step on Sephacryl S-200. Both preparations transferred fucose to theO-4 position ofN-acetylglucosamine in Type 1 (Gal1-3GlcNAc-R) acceptors and theO-3 position of glucose in lactose-based (Gal1-4Glc) oligosaccharides, and both used Type 1 sialylated compounds when the terminalN-acetylneuraminic acid was present in -2,3 linkage. The striking difference between the two preparations was in their reactivity with Type 2 (Gal1-4GlcNAc-R) chains; after Sephacryl S-200 chromatography the apparentK M values for the -3/4- preparation with unsubstituted low-molecular-weight Type 2 oligosaccharides were considerably increased. Substitution of the terminal galactose with sialic acid in -2,3 linkage decreased theK M values for low-molecular-weight oligosaccharides but no detectable incorporation of fucose was observed intoN-acetyllactosamine end-groups of glycoproteins withN-linked oligosaccharide chains, irrespective of the presence of sialic acid in the terminal sequences.Deceased 25 June 1991.  相似文献   

11.
An extracellular amylase (AmyKS) produced by a newly isolated Bacillus subtilis strain US572 was purified and characterized. AmyKS showed maximal activity at pH 6 and 60°C with a half-life of 10 min at 70°C. It is a Ca2+ independent enzyme and able to hydrolyze soluble starch into oligosaccharides consisting mainly of maltose and maltotriose. When compared to the studied α-amylases, AmyKS presents a high affinity toward soluble starch with a Km value of 0.252 mg ml−1. Coupled with the size-exclusion chromatography data, MALDI–TOF/MS analysis indicated that the purified amylase is a dimer with a molecular mass of 136,938.18 Da. It is an unusual feature of a non-maltogenic α-amylase. A 3D model and a dimeric model of AmyKS were generated showing the presence of an additional domain suspected to be involved in the dimerization process. This dimer arrangement could explain the high substrate affinity and catalytic efficiency of this enzyme.  相似文献   

12.
. In plants, the function of Ŏ-fucosylation remains largely unknown. To gain insight into the role of Ŏ-fucosylation during plant development, we generated transgenic tobacco plants overexpressing the human ō/4-fucosyltransferase (hFuc-TIII). Overexpressors clearly contained high amounts of hFuc-TIII and revealed a strong increase in !(1,4)fucosyltransferase activity in plant sexual organs. As a consequence, a more significant staining of Lewisa motifs, the product of !(1,4)fucosyltransferase activity, was observed in transgenic pollen grains compared to those of controls. Here, we show that pollen grain development was altered in transgenic plants. The average size (polar and equatorial diameters) of mature pollen grains overexpressing hFuc-TIII was smaller than control pollen grains. Furthermore, whereas a reticulate cell wall surface was always observed on control pollen grains, a punctate and disorganized cell wall surface was observed on hFuc-TIII overexpressor pollen grains. In addition, transgenic pollen tube elongation was delayed compared to control pollen tube growth. This latter phenotype could at least explain the 35% reduction of seed production determined for the hFuc-TIII-overexpressing plants.  相似文献   

13.
14.
Intact viable 13762 mammary-adenocarcinoma ascites cells hydrolyse added ATP. The localization of hydrolysis product and inactivation by the slowly penetrating chemical reagent diazotized sulphanilic acid indicate that this ATPase is at the external surface of the cell. A number of features differentiate this enzyme from mitochondrial, myosin and cation-transport ATPases. It is stimulated by either Ca2+ or Mg2+ and has little or no activity in their absence. It is insensitive to ouabain, oligomycin and azide. It is the major ATPase activity found in homogenates of gently disrupted 13762 cels. The ATPase activity is inhibited at high substrate concentrations and shows an apparent stimulation by concanavalin A in isolated membranes, but not in intact cells. The stimulation by concanavalin A results predominantly from a release from substrate inhibition.  相似文献   

15.
16.
A novel glycoside hydrolase (GH) family 36 α-galactosidase gene (designated PtGal36A) from Paecilomyces thermophila was cloned and expressed in Escherichia coli. The deduced sequence of the gene shared the highest identity of 87% with the characterized α-galactosidase from Aspergillus nidulans FGSC A4. The recombinant enzyme (PtGal36A) was purified to homogeneity with a purification fold of 11.0 and a recovery yield of 55.2%. PtGal36A was most active at pH 5.0 and 60 °C and was stable within the pH range of 4.5-11.5 and up to 50 °C. PtGal36A displayed strict specific activity towards substrates with α-galactosyl linkages in the nonreducing ends, with the highest activity on stachyose (58.5 U/mg), followed by melibiose (39.2 U/mg) and raffinose (31.4 U/mg). The enzyme efficiently hydrolyzed raffinose family oligosaccharides in soybean meal by more than 95%. Moreover, PtGal36A showed excellent resistance (residual activities >90%) against α-chymotrypsin, proteinase K, subtilisin A, trypsin and papain. Therefore, PtGal36A should be a good candidate for the food and feed industries.  相似文献   

17.
An extracellular α-glucosidase produced by Aspergillus niveus was purified using DEAE-Fractogel ion-exchange chromatography and Sephacryl S-200 gel filtration. The purified protein migrated as a single band in 5% PAGE and 10% SDS–PAGE. The enzyme presented 29% of glycosylation, an isoelectric point of 6.8 and a molecular weight of 56 and 52 kDa as estimated by SDS-PAGE and Bio-Sil-Sec-400 gel filtration column, respectively. The enzyme showed typical α-glucosidase activity, hydrolyzing p-nitrophenyl α-d-glucopyranoside and presented an optimum temperature and pH of 65°C and 6.0, respectively. In the absence of substrate the purified α-glucosidase was stable for 60 min at 60°C, presenting t 50 of 90 min at 65°C. Hydrolysis of polysaccharide substrates by α-glucosidase decreased in the order of glycogen, amylose, starch and amylopectin. Among malto-oligosaccharides the enzyme preferentially hydrolyzed malto-oligosaccharide (G10), maltopentaose, maltotetraose, maltotriose and maltose. Isomaltose, trehalose and β-ciclodextrin were poor substrates, and sucrose and α-ciclodextrin were not hydrolyzed. After 2 h incubation, the products of starch hydrolysis measured by HPLC and thin layer chromatography showed only glucose. Mass spectrometry of tryptic peptides revealed peptide sequences similar to glucan 1,4-alpha-glucosidases from Aspergillus fumigatus, and Hypocrea jecorina. Analysis of the circular dichroism spectrum predicted an α-helical content of 31% and a β-sheet content of 16%, which is in agreement with values derived from analysis of the crystal structure of the H. jecorina enzyme.  相似文献   

18.
《Gene》1997,187(2):151-158
A gene encoding the α-tubulin of Candida albicans has been cloned and characterized. Nucleotide sequence analysis reveals the presence of an intron within the structural gene and predicts the synthesis of a polypeptide of 448 amino acid residues. Comparison of nucleotide and amino acid sequences with the Saccharomyces cerevisiae α-tubulin encoding genes shows a 75% homology and about 92% similarity respectively. In contrast to S. cerevisiae, C. albicans appears to possess only one gene for α-tubulin which is able to functionally complement a S. cerevisiae cold-sensitive tub1 mutant.  相似文献   

19.
20.
Hemicelluloses represent a large reservoir of carbohydrates that can be utilized for renewable products. Hydrolysis of hemicellulose into simple sugars is inhibited by its various chemical substituents. The glucuronic acid substituent is removed by the enzyme α-glucuronidase. A gene (deg75-AG) encoding a putative α-glucuronidase enzyme was isolated from a culture of mixed compost microorganisms. The gene was subcloned into a prokaryotic vector, and the enzyme was overexpressed and biochemically characterized. The DEG75-AG enzyme had optimum activity at 45?°C. Unlike other α-glucuronidases, the DEG75-AG had a more basic pH optimum of 7-8. When birchwood xylan was used as substrate, the addition of DEG75-AG increased hydrolysis twofold relative to xylanase alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号