首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intrabodies (IB) are suitable tools to down-regulate the expression of cell surface molecules in general. In this work, the appearance of major histocompatibility (MHC) class I molecules on the cell surface could be prevented by the expression of intracellularly localized anti-MHC class I antibodies. The expression of MHC antigens presenting intracellularly synthetised peptides on the cell surface is the predominant reason for immunologic detection and rejection of allogeneic cell and tissue transplants. Allogeneic keratinocyte sheets might be a suitable tool for skin grafting. Within this study primary rat keratinocytes have been transfected with anti-MHC I-IB. Strong IB-expressing cells showed a MHC I "knockout" phenotype. The cells did not exhibit any significant alterations compared to non-transfected cells: the cell growth and the expression of other surface molecules were unaltered. Merely an enhanced intracellular accumulation of MHC I molecules could be detected. Notably, IB-expressing keratinocytes displayed a reduced susceptibility to allogeneic cytotoxic T cells in vitro compared to unmodified cells with a normal level of MHC I surface expression. These MHC I-deficient keratinocytes might be utilized in tissue-engineered allogeneic non-immunogeneic skin transplants. The principle of MHC class I manipulation in general can be used for other allogeneic cell and tissue-engineered transplants as well.  相似文献   

2.
Using human umbilical vein endothelial cells (HUVEC) and porcine aortic endothelial cells (PAEC) as target cells, human peripheral blood NK cells (PBNK) and NK92 cells as effector cells, the differential cytotoxicities of NK cells to allo- and xeno-endothelial cells were studied. The influence of MHC class I molecules on the cytotoxicity of human NK cells was assayed using acid treatment, and blockades of MHC class I antigens, CD94 and KIR (NKB1). The results indicated that the killing of PAEC by the two kinds of NK cells is higher than that of HUVEC. After acid- treatment, the cytotoxicity of the two kinds of NK cells to PAEC and HUVEC is significantly enhanced, but the magnitude of the enhancement is different. The enhancement of NK killing to acid treated HUVEC is much greater than that to PAEC. Blockade of CD94 mAb did not alter the NK cytotoxicity, while blockade of NKB1 mAb enhanced the cytotoxicity of PBNK to HUVEC and PAEC by 95% and 29% respectively. The results above suggested that the differential recognition of MHC I molecules of xeno-endothelial cells by human NK cells could be the major reason for higher NK cytotoxicity to PAEC. KIR might be the primary molecule that transduced inhibitory signals when endothelial cells were injured by NK cells.  相似文献   

3.
Using human umbilical vein endothelial cells (HUVEC) and porcine aortic endothelial cells (PAEC) as target cells, human peripheral blood NK cells (PBNK) and NK92 cells as effector cells, the differential cytotoxicities of NK cells to allo- and xeno-endothelial cells were studied. The influence of MHC class I molecules on the cytotoxicity of human NK cells was assayed using acid treatment, and blockades of MHC class I antigens, CD94 and KIR (NKB1). The results indicated that the killing of PAEC by the two kinds of NK cells is higher than that of HUVEC. After acid-treatment, the cytotoxicity of the two kinds of NK cells to PAEC and HUVEC is significantly enhanced, but the magnitude of the enhancement is different. The enhancement of NK killing to acid treated HUVEC is much greater than that to PAEC. Blockade of CD94 mAb did not alter the NK cytotoxicity, while blockade of NKB1 mAb enhanced the cytotoxicity of PBNK to HUVEC and PAEC by 95% and 29% respectively. The results above suggested that the different  相似文献   

4.
Graft endothelial cells are primary targets of host CTL-mediated injury in acute allograft rejection. As an in vitro trial of gene therapy to reduce CTL-mediated endothelial injury, we stably transduced early passage HUVEC with a caspase-resistant mutant form (D34A) of the anti-apoptotic gene Bcl-2. Bcl-2 transductants were compared with HUVEC transduced in parallel with an enhanced green fluorescent protein (EGFP) gene. Both transduced HUVEC have equivalent growth rates in complete medium and both show contact inhibition of growth. However, compared with EGFP-transduced HUVEC, the Bcl-2-transduced cells are resistant to the apoptotic effects of serum and growth factor withdrawal and are also resistant to the induction of apoptosis by staurosporine or by ceramide, with or without TNF. Transduced Bcl-2 did not reduce TNF-mediated NF-kappaB activation or constitutive expression of class I MHC molecules. HUVEC expressing D34A Bcl-2 were significantly more resistant to lysis by either class I-restricted alloreactive or PHA-redirected CTL than were HUVEC expressing EGFP. We conclude that transduction of graft endothelial cells with D34A Bcl-2 is a possible approach for reducing allograft rejection.  相似文献   

5.
Tissue engineering has been conducted in the study of cardiovascular grafts for many years. Many obstacles have been overcome in this rapidly changing field, but one difficulty has remained until now: the large number of endothelial cells (ECs) needed for seeding the inner layer of bypass graft. Recent advances in endothelial progenitor cell (EPC) isolation and culture techniques have increased the interest in genetic studies. Despite these advances in EPC studies, the "gold standard" for the seeding of tissue engineering constructs or hybrid grafts remains mature human umbilical vein endothelial cells (HUVECs). This study investigates the ability of HUVECs to be expanded in culture to provide sufficient cells for graft seeding. The levels of gene expression of key genes are then examined to ensure that these cells retain the EC phenotype. This study demonstrates that HUVECs may be cultured for up to 12 passages without alteration in phenotype. Subsequent passage numbers are sufficiently similar to those preceding them to allow cells of different passages to be mixed without gene expression anomalies.  相似文献   

6.
We investigated the performance of small-caliber polyurethane (PU) small-diameter vascular prosthesis generated using the electrospinning technique. PU was electrospun into small-diameter, small-caliber tubular scaffolds for potential application as vascular grafts. We investigated the effects of electrospinning conditions (solution concentration, mandrel rotation speed) on the microstructure and porosity of the scaffolds for the purpose of preparing scaffolds with optimum microstructures and properties. We evaluated the mechanical properties of the scaffolds by tensile tests and the cytotoxicity of the PU small-diameter, small-caliber PU synthetic vascular graft by the MTT assay. The adhesion of endothelial cells to the PU scaffold was characterized by Hoechst staining and fluorescence microscopy, and we measured endothelial cell proliferation on the PU scaffold by the CCK-8 assay. We analyzed the prosthesis microstructure and endothelial cell morphology using scanning electron microscopy. With increasing PU concentration in the electrospinning solution, the fiber diameter of the vascular graft increased and the porosity decreased. In addition, with increasing electrospinning time, the wall thickness increased and the porosity decreased. We found that regular fiber orientation can be obtained by adjusting the rotation speed of the mandrel. Cell proliferation was not inhibited as the small-caliber PU synthetic vascular grafts showed little cytotoxicity. The endothelial cells had faster adherence to the PU scaffolds than to the PTFE surface during the initial contact. After prolonged cell culture, significantly higher endothelial cell proliferation rate was observed in the PU scaffold groups than the PTFE group. We obtained small-caliber PU vascular grafts with optimal fiber arrangement, excellent mechanical properties, and optimal biocompatibility by optimizing the electrospinning conditions. This study provides in vitro biocompatibility data that is helpful for the clinical application of the PU small-diameter, small-caliber PU vascular grafts.  相似文献   

7.
8.
Chronic rejection is the major limiting factor to long term survival of solid organ allografts. The hallmark of chronic rejection is transplant atherosclerosis, which is characterized by the intimal proliferation of smooth muscle cells, endothelial cells, and fibroblasts, leading to vessel obstruction, fibrosis, and eventual graft loss. The mechanism of chronic rejection is poorly understood, but it is suspected that the associated vascular changes are a result of anti-HLA Ab-mediated injury to the endothelium and smooth muscle of the graft. In this study we have investigated whether anti-HLA Abs, developed by transplant recipients following transplantation, are capable of transducing signals via HLA class I molecules, which stimulate cell proliferation. In this report we show that ligation of class I molecules with Abs to distinct HLA-A locus and HLA-B locus molecules results in increased tyrosine phosphorylation of intracellular proteins and induction of fibroblast growth factor receptor expression on endothelial and smooth muscle cells. Treatment of cells with IFN-gamma and TNF-alpha up-regulated MHC class I expression and potentiated anti-HLA Ab-induced fibroblast growth factor receptor expression. Engagement of class I molecules also stimulated enhanced proliferative responses to basic fibroblast growth factor, which augmented endothelial cell proliferation. These findings support a role for anti-HLA Abs and cytokines in the transduction of proliferative signals, which stimulate the development of myointimal hyperplasia associated with chronic rejection of human allografts.  相似文献   

9.
We have evaluated the relationship between the neuronal myc gene (NMYC) and class I major histocompatibility complex (MHC) expression in human neuroblastoma (NB) tumor cell lines. Class I MHC surface Ag expression in NB cell lines varied from nearly undetectable to levels nearly as high as in a lymphoblastoid cell line. Class I MHC mRNA levels in NMYC-amplified NB cell lines were lower than levels observed in single copy NMYC NB cell lines. However, considerable variation in class I MHC surface Ag and mRNA expression was evident in NMYC-amplified cell lines. To determine directly whether NMYC might modulate class I MHC expression in NB, we transfected a plasmid containing a recombinant NMYC gene into two tumor cell lines derived from a NB and a related neuroepithelioma tumor. Constitutive overexpression of the recombinant NMYC gene produced no consistent change in class I MHC surface Ag or mRNA levels. To determine whether class I MHC expression might be developmentally regulated in adrenal medullary cells, the precursor cells of adrenal NB tumors, beta 2-microglobulin expression was measured in fetal and adult adrenal glands. beta 2-Microglobulin expression was not evident in the neuroblasts of a 24-wk-old fetal adrenal gland, whereas beta 2-microglobulin expression was present in the adult adrenal medulla. These data suggest that variation in class I MHC expression among NB cells may reflect the developmental stage at which neuroblasts were arrested during tumorigenesis.  相似文献   

10.
It has been recognized that seeding vascular bypass grafts with endothelial cells is the ideal method of improving their long-term patency rates. The aim of this study was to assess the in vitro cytocompatibility of a novel silica nanocomposite, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) and hence elicit its feasibility at the vascular interface for potential use in cardiovascular devices such as vascular grafts. Using primary human umbilical vein endothelial cells (HUVEC), cell viability and adhesion were studied using AlamarBlue assays, whereas cell proliferation on the polymer was assessed using the PicoGreen dye assay. Cellular confluence and morphology on the nanocomposite were analyzed using light and electron microscopy, respectively. Our results showed that there was no significant difference between cell viability in standard culture media and POSS-PCU. Endothelial cells were capable of adhering to the polymer within 30 min of contact (Student's t-test, p<0.05) with no difference between POSS-PCU and control cell culture plates. POSS-PCU was also capable of sustaining good cell proliferation for up to 14d even from low seeding densities (1.0×103 cells/cm2) and reaching saturation by 21 d. Microscopic analysis showed evidence of optimal endothelial cell adsorption morphology with the absence of impaired motility and morphogenesis. In conclusion, these results support the application of POSS-PCU as a suitable biomaterial scaffold in bio-hybrid vascular prostheses and biomedical devices.  相似文献   

11.
Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, interacts with the major collagen I receptor, the alpha(2)beta(1) integrin, inhibiting collagen binding. Here we show that ALT-C also inhibits the adhesion of a mouse fibroblast cell line (NIH-3T3) to collagen I (IC(50) 2.2 microm). In addition, when immobilized on plate wells, ALT-C supports the adhesion of this cell line as well as of human vein endothelial cell (HUVEC). ALT-C (3 microm) does not detach cells that were previously bound to collagen I. ALT-C (5 nm) induces HUVEC proliferation in vitro, and it inhibits the positive effect of vascular endothelial growth factor (VEGF) or FGF-2 on the proliferation of these cells, thus suggesting a common mechanism for these proteins. Gene expression analysis of human fibroblasts growing on ALT-C- or collagen-coated plates showed that ALT-C and collagen I induce a very similar pattern of gene expression. When compared with cells growing on plastic only, ALT-C up-regulates the expression of 45 genes including the VEGF gene and down-regulates the expression of 30 genes. Fibroblast VEGF expression was confirmed by RT-PCR and ELISA assay. Up-regulation of the VEGF gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates Akt/PKB phosphorylation, a signaling event involved in endothelial survival and angiogenesis. In conclusion, ALT-C acts as a survival factor, promoting adhesion and endothelial cell proliferation.  相似文献   

12.
In the present study, clonal rainbow trout (Oncorhynchus mykiss) embryos and larvae were assayed for the expression of key molecules involved in specific cell-mediated cytotoxicity using an anti-MHC class I monoclonal Ab and by RT-PCR using specific primers derived from classical MHC class I (class Ia), TCR and CD8. Whereas RT-PCR revealed that MHC class Ia and CD8 were expressed from at least 1 week after fertilisation (p.f.) on, TCR expression was detectable from 2 weeks p.f. Immunohistochemistry indicated an early and distinct expression of MHC class I protein in the thymus. Positive lymphoid, epithelial and endothelial cells were found in the pronephros, in the spleen and in the inner and outer epithelia at later stages. Whereas in older rainbow trout the intestine is counted among the organs of the highest class I expression, during ontogeny it was the last site (39 days after hatching) where such expression was detectable. Knowledge on the appearance of the assayed key molecules during fish development is relevant for the pathogenesis of infections as well as for early vaccine delivery. Besides such information regarding the development of the adaptive immune system, immunohistochemistry revealed that in early larvae MHC class I was expressed in neurons whereas in older rainbow trout this was not observed.  相似文献   

13.
To study the regulation of MHC class I gene expression during embryonic development, we have characterized a number of clonal cell lines derived from somite stage mouse embryos that were established with or without infection by several transforming retroviruses in combination with murine leukemia viruses. Unlike embryonal carcinoma (EC) cells that have been used as a model for early embryos, the cell lines derived from somite stage embryos are negative for stage specific embryonic Ag-1 and do not appear to differentiate after retinoic acid treatment. Morphology varies from clone to clone and is distinct from that of F9 and other EC cells. In agreement with previous findings in in vivo embryos, expression of surface MHC class I antigen in 57 new clones is either undetectable or low (with variability). All of the clones respond to the addition of interferons and express MHC class I antigens at high levels, but the kinetics of mRNA accumulation vary considerably. To examine the basis of the generally low or absent MHC class I gene expression in these cells, we tested promoter activity of a MHC class I gene by CAT assay after transient DNA transfection. Regardless of the basal levels of mRNA or surface Ag, CAT activity directed by various portions of the 5' flanking region of the MHC class I gene was uniformly low. The cells showed neither the negative nor the positive regulation of MHC class I genes that had been noted respectively for EC cells and for cells expressing the Ag constitutively. The pattern seen in the new cell lines suggests that there is an intermediate stage in the developmental regulation of MHC class I gene expression that may operate during the middle to late stage of fetal development.  相似文献   

14.
Nef, a regulatory protein of human and simian immunodeficiency viruses, downregulates cell surface expression of both class I MHC and CD4 molecules in T cells by accelerating their endocytosis. Fibroblasts were used to study alterations in the traffic of class I MHC complexes induced by Nef. We found that Nef downregulates class I MHC complexes by a novel mechanism involving the accumulation of endocytosed class I MHC in the trans-Golgi, where it colocalizes with the adaptor protein-1 complex (AP-1). This effect of Nef on class I MHC traffic requires the SH3 domain-binding surface and a cluster of acidic amino acid residues in Nef, both of which are also required for Nef to downregulate class I MHC surface expression and to alter signal transduction in T cells. Downregulation of class I MHC complexes from the surface of T cells also requires a tyrosine residue in the cytoplasmic domain of the class I MHC heavy chain molecule. The requirement of the same surfaces of the Nef molecule for downregulation of surface class I MHC complexes in T cells and for their accumulation in the trans-Golgi of fibroblasts indicates that the two effects of Nef involve similar interactions with the host cell machinery and involve a molecular mechanism regulating class I MHC traffic that is common for both of these cell types. Interestingly, the downregulation of class I MHC does not require the ability of Nef to colocalize with the adaptor protein-2 complex (AP-2). We showed previously that the ability of Nef to colocalize with AP-2 correlates with the ability of Nef to downregulate CD4 expression. Our observations indicate that Nef downregulates class I MHC and CD4 surface expression via different interactions with the protein sorting machinery, and link the sorting and signal transduction machineries in the regulation of class I MHC surface expression by Nef.  相似文献   

15.
16.
Substantial evidence suggests that MHC class II molecules play a critical role in transducing signals during B cell activation and differentiation. In addition, we previously found that cross-linking of MHC class II molecules using anti-MHC class II antibodies inhibited NF-kappaB activation in resting B cells isolated from mouse spleen. In this study, we investigated the mechanism of anti-MHC class II antibody-mediated inhibition of LPS-induced NF-kappaB activation using a resting B cell line, 38B9. We found that treatment with a corresponding anti-MHC class II antibody reduced the activation of NF-kappaB in LPS-stimulated 38B9 cells, treatment of the antibody mediated down-regulation of PKC and ERK/p38 MAP kinase pathways, and treatment with PKC inhibitors caused down-regulation of ERK and p38 MAP kinase activities in LPS-stimulated 38B9 cells. Our results suggest that the PKC and ERK/p38 MAP kinase pathways are regulated by anti-MHC class II antibodies, and that MHC class II molecules are actively involved in the signal transduction pathway in the resting B cell line, 38B9. Consequently, disruption of these pathways might contribute to the inhibition of LPS-induced NF-kappaB activation in 38B9 cells.  相似文献   

17.
异种移植排斥反应的主要特征为内皮细胞发生Ⅱ型激活.引起黏附分子、细胞因子和前促凝分子等基因高表达.造成血管收缩、白细胞黏附、激活、聚集和血栓形成.最终导致内皮细胞凋亡。保护基因HO-1通过抑制前炎症反应及免疫调抑作用以保护异种移植器官。因此。通过构建含剪切的野生型大鼠HO-1 cDNA的表达型质粒.用DOTAP包裹转入HUVEC中表达。测定表达量及表达产物活性;采用TNF-α诱导细胞凋亡。以及Heme和SnPP分别刺激细胞。诱导和抑制细胞内HO-1表达量.流式细胞仪测定细胞凋亡率,明确HO一1的抗细胞凋亡作用。结果显示HO-1在HUVEC中高度表达。活力为对照组5倍;TNF-α诱导细胞凋亡。但Heme处理后细胞凋亡率下降至20%以下。而SnPP处理后细胞凋亡率显著上升,最高达到95%以上。并且HO-1基因表达抑制时细胞凋亡率是诱导时的5—20倍。本实验表明Heme处理后HO-1表达上调。具有显著抗细胞凋亡作用。细胞凋亡率与HO-1表达量呈负相关,提示HO-1通过抑制细胞凋亡。对细胞有保护作用。  相似文献   

18.
Lee WI  Khim M  Im IR  Shin O  Park JW  Choo SJ  Yun TJ  Kim SW  Lee H 《Tissue & cell》2011,43(2):108-114
Recently, human neonatal thymus-derived mesenchymal stromal cells (nTMSCs) have been recognized as a promising mesenchymal stem cell source for combined cell and gene therapy. While efficient gene transfer is crucial for optimizing therapeutic efficacy, almost no studies have yet reported on the characteristics of nTMSC in terms of genetic modification. The present study investigates and realizes the potential of self-complementary adeno-associated viruses (scAAVs) as an effective transduction tool for nTMSCs. Transduction efficiency (TE), cytotoxicity and functional characteristics were determined in nTMSCs isolated from thymic tissues and transduced with scAAV1-6 and -8 serotypes expressing GFP. Our study confirms MSC-typical characteristics in nTMSCs and additionally, suggests further therapeutic advantages of nTMSCs due to its particularities with lower levels of MHC class I protein and higher levels of CD31 and CD34 expression. Effective transduction by scAAV2 and scAAV5 was evident in the majority of nTMSCs that were GFP-positive at a multiplicity of infection (MOI) of 1000. TE was further improved by higher MOI treatments. Transduced cells also successfully maintained adipocyte and vessel-forming endothelial cell multi-potency and showed no evidence of gene delivery-related cytotoxicity. Collectively, the data strongly suggest that scAAVs are promising technical platforms for safe and effective transgene expression in nTMSCs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号