首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Gap junctional communication in the post-implantation mouse embryo.   总被引:18,自引:0,他引:18  
C W Lo  N B Gilula 《Cell》1979,18(2):411-422
We studied the extent of cell-to-cell communication via junctional channels in in vitro-implanted mouse blastocysts by monitoring ionic coupling and the spread of two injected low molecular weight dyes, fluorescein and Lucifer yellow. In the early attached embryos, both trophoblasts and cells of the inner cell mass (ICM) were ionically coupled to one another. Dye injections in either trophoblasts or ICM cells resulted in spread to the entire embryo. As older and more developed embryos were examined, the spread of injected dye was progressively more limited. In the most developed embryos examined, dye injected into a cell in the ICM region resulted in spread throughout the ICM but not into the surrounding trophoblast cells, while dye injected into a trophoblast cell did not spread to any other cell in the embryo. Simultaneous monitoring of ionic coupling and dye injections in embryos of intermediate stages in this transition revealed that the trophoblast and ICM cells were ionically coupled, even across the apparent boundary where no dye was observed to pass. In the latest stage embryos examined in which no injected dye was observed to move out of the ICM, ionic coupling was still observed between the cells of the ICM and the trophoblasts. Furthermore, in the more developed embryos, dye injected into the ICM region frequently was not transferred to all the cells of the ICM, thus suggesting a further compartmentalization of due spread within the ICM. Our observations that ionic coupling is more extensive than the detectable spread of injected dyes may perhaps reflect a reduced number of junctional channels. With fewer channels less dye would pass between cells, so that, together with continuous quenching, the transfer of injected dye would not be detectable. This partial segregation of cell-to-cell communication as indicated by the limited dye spread may parallel specific differentiation processes, in particular that of giant trophoblast, embryonic ectoderm and extraembryonic endoderm differentiation.  相似文献   

2.
The mouse inner cell mass is established by cells that are allocated to internal positions after the 8-cell stage. We analyzed the timing of this allocation by microinjecting two cell lineage markers, horseradish peroxidase and rhodamine-conjugated dextran, into mouse blastomeres at the 8- to 32-cell stage. Prospective analysis was performed by coinjection of peroxidase and dextran, followed by 12-22 hr of culture and staining for peroxidase activity; retrospective analysis was performed by injection of peroxidase alone and localization of sister cells without further culture. Both approaches indicated that cells are allocated to internal positions during the fourth and fifth cleavage divisions, but not the sixth cleavage division, of the mouse embryo. Thus, outer cells can have inner descendants until the late morula/early blastocyst (32-cell) stage, but cells remaining outside after the fifth cleavage division are restricted to a trophectoderm fate. This information about cell lineage indicates that the previously observed totipotency of the cleaving mammalian embryo's cells is a regulative attribute that is used in normal development.  相似文献   

3.
Intercellular communication in the early human embryo   总被引:5,自引:0,他引:5  
A preliminary study on intercellular communicative devices in the early human embryo has been made using dye-coupling techniques and electron microscopy (EM). Lucifer yellow injected into single blastomeres of embryos at the 4-cell stage up to the late morula stage did not spread to neighbouring cells, indicating that gap junctions and cytoplasmic bridges are not significant pathways for information transfer. Dye spread was first observed in the blastocyst stage, where trophectoderm cells and inner mass cells were shown to be in communication through gap junctions. Studies at the EM level confirmed this finding. Tight junctions and desmosome-like structures, apparent from the 6-cell stage onward, were located both peripherally and centrally and were initially nonzonular. The role of intercellular devices in the primary differentiation of the human embryo is discussed.  相似文献   

4.
Inner cell mass (ICM) and trophectoderm cell lineages in preimplantation mouse embryos were studied by means of iontophoretic injection of horseradish peroxidase (HRP) as a marker. HRP was injected into single blastomeres at the 2- and 8-cell stages and into single outer blastomeres at the 16-cell and late morula (about 22- to 32-cell) stages. After injection, embryos were either examined immediately for localization of HRP (controls) or they were allowed to develop until the blastocyst stage (1 to 3.5 days of culture) and examined for the distribution of labeled cells. In control embryos, HRP was confined to one or two outer blastomeres. In embryos allowed to develop into blastocysts, HRP-labeled progeny were distributed into patches of cells, showing that there is limited intermingling of cells during preimplantation development. A substantial fraction of injected blastomeres contributed descendants to both ICM and trophectoderm (95, 58, 44, and 35% for injected 2-cell, 8-cell, 16-cell, and late morula stages, respectively). Although more than half of the outer cells injected at 16-cell and late morula stages contributed descendants only to trophectoderm (53 and 63%, respectively), some outer cells contributed also to the ICM lineage even at the late morula stage. Although the mechanism for allocation of outer cells to the inner cell lineage is unknown, our observation of adjacent labeled mural trophectoderm and presumptive endoderm cells implicated polarized cell division. This observation also suggests that mural trophectoderm and presumptive endoderm are derived from common immediate progenitors. These cells appear to separate into inner and outer layers during the fifth cleavage division. Our results demonstrate the usefulness of HRP as a cell lineage marker in mouse embryos and show that the allocation of cells to ICM or trophectoderm begins after the 2-cell stage and continues into late cleavage.  相似文献   

5.
Cell-cell communication through gap junctions was examined in Xenopus laevis embryos between the 16-cell and early blastula stages using Lucifer Yellow, Fluorescein, lead EDTA and dicyanoargentate as probes of junctional permeability. Injections were made into cells whose position was identified with respect to the primary cleavage axis and the grey crescent. FITC dextrans revealed cytoplasmic bridges between the injected cell and its sister only. In the animal pole at the 16-cell stage at the future dorsal side of the embryo, Lucifer Yellow was frequently and extensively transferred between cells through gap junctions. At the future ventral side gap junctional transfer of Lucifer Yellow was significantly less frequent and less extensive. The asymmetry of transfer between future dorsal and ventral sides of the animal pole was more marked at the 32-cell stage. In the vegetal pole also at the 32-cell stage, a dorsoventral difference in junctional permeability to Lucifer Yellow was observed. At the 64-cell stage the transfer of Lucifer Yellow was relatively frequent between cells lying in the same radial segment in the animal pole; transfer into cells outside each segment was infrequent, except at the grey crescent. At the 128-cell stage, Lucifer transfer between future dorsal or future ventral cells in the equatorial region was infrequent. A high incidence of transfer was restored at the future dorsal side at the 256-cell stage. At the 32-cell stage, fluorescein was infrequently transferred between animal pole cells although lead EDTA moved from cell to cell with high, comparable frequency in future dorsal and ventral regions. Dicyanoargentate always transferred extensively, both at the 32- and 64-cell stages. Treatment of embryos with methylamine raised intracellular pH by 0.15 units, increased the electrical conductance of the gap junction and produced a 10-fold increase in the frequency of Lucifer Yellow transfer through gap junctions in future ventral regions of the animal pole at the 32-cell stage.  相似文献   

6.
Intercellular junction formation in preimplantation mouse embryos was investigated with thin-section and freeze-fracture electron microscopy. At the four-cell stage, regions of close membrane apposition with focal points of membrane contact and occasional underlying cytoplasmic densities were observed between blastomeres of thin-sectioned embryos. Corresponding intramembrane specializations were not, however, observed in freeze-fractured embryos. At the 8- to 16-cell stage, small gap and macula occludens junctions and complexes of these junctions were observed at all levels between blastomeres of freeze-fractured embryos. As development progressed from the early to mid 8- to 16-cell stage, the size of the occludens/gap junction complexes increased, forming fascia occludens/gap junction complexes. At the morula stage, gap junctions and occludens/gap junction complexes were observed on both presumptive trophoblast and inner cell-mass cells. Zonula occludens junctions were first observed at the morula stage on presumptive trophoblast cells of freeze-fractured embryos. The number of embryos possessing zonula occludens junctions increased at the mid compared to the early morula stage. At the blastocyst stage, junctional complexes consisting of zonula occludens, macula adherens, and gap junctions were observed between trophoblast cells of freeze-fractured and thin-sectioned embryos. Isolated gap and occludens junctions, adherens junctions, and occludens/gap junction complexes were observed on trophoblast and inner cell-mass cells.  相似文献   

7.
Using the whole-cell voltage-clamp technique we have studied electrical coupling and dye coupling between pairs of blastomeres in 16- to 128-cell-stage sea urchin embryos. Electrical coupling was established between macromeres and micromeres at the 16-cell stage with a junctional conductance (G(j)) of 26 nS that decreased to 12 nS before the next cleavage division. G(j) between descendants of macromeres and micromeres was 12 nS falling to 8 nS in the latter half of the cell cycle. Intercellular current intensity was independent of transjunctional voltage, nondirectional, and sensitive to 1-octanol and therefore appears to be gated through gap junction channels. There was no significant coupling between other pairs of blastomeres. Lucifer yellow did not spread between these electrically coupled cell pairs and in fact significant dye coupling between nonsister cells was observed only at the 128-cell stage. Since 1-octanol inhibited electrical communication between blastomeres at the 16- to 64-cell stage and also induced defects in formation of the archenteron, it is possible that gap junctions play a role in embryonic induction.  相似文献   

8.
Baboon and rhesus monkey embryos demonstrate compaction during the morula stage, although not all blastomeres participate simultaneously. During this process the outer adherent cells develop progressively more extensive apical junctional complexes. Several spaces appear between blastomeres before formation of a single cavity, and assortment of inner cell mass and trophoblast cells is less rapid and less precise in primates than in rodents. Nonhuman primates should prove appropriate for studies of individual aberrant blastomeres during blastocyst formation.  相似文献   

9.
Using the whole-cell voltage clamp technique, we have studied junctional conductance (Gj), and Lucifer Yellow (LY) coupling in 2-cell and 32-cell ascidian embryos. Gj ranges from 17.5 to 35.3 nS in the 2-cell embryo where there is no passage of LY, and from 3.5 to 12.2 nS in the later embryo where LY dye spread is extensive. In both cases, Gj is independent of the transjunctional potential (Vj). Manually apposed 2-cell or 32-cell embryos established a junctional conductance of up to 10 nS within 30 min of contact. Furthermore, since we did not observe any significant number of cytoplasmic bridges at the EM and Gj is sensitive to octanol, it is probable that blastomeres in the 2-cell and 32-cell embryos are in communication by gap junctions. In order to compare Gj in the two stages and to circumvent problems of cell size, movement and spatial location, we used cytochalasin B to arrest cleavage. Gj in cleavage-arrested 2-cell embryos ranged from 25.0 to 38.0 nS and remained constant over a period of 2.5 h. LY injected into a blastomere of these arrested embryos did not spread to the neighbour cell until they attained the developmental age of a 32- to 64-cell control embryo. Our experiments indicate a change in selectivity of gap junctions at the 32-cell stage that is not reflected by a macroscopic change in ionic permeability.  相似文献   

10.
The mouse blastocyst expresses a 240,000-mol-wt polypeptide that cross-reacts with antibody to avian erythrocyte alpha-spectrin. Immunofluorescence localization showed striking changes in the distribution of the putative embryonic spectrin during preimplantation and early postimplantation development. There was no detectable spectrin in either the unfertilized or fertilized egg. The first positive reaction was observed in the early 2-cell stage when a bright band of fluorescence delimited the region of cell-cell contact. The blastomeres subsequently developed continuous cortical layers of spectrin and this distribution was maintained throughout the cleavage stages. A significant reduction in fluorescence intensity occurred before implantation in the apical region of the mural trophoblast and the trophoblast outgrowths developed linear arrays of spectrin spots that were oriented in the direction of spreading. In contrast to the alterations that take place in the periphery of the embryo, spectrin was consistently present in the cortical cytoplasm underlying regions of contact between the blastomeres and between cells of the inner cell mass. The results suggest a possible role for spectrin in cell-cell interactions during early development.  相似文献   

11.
S Lee  N B Gilula  A E Warner 《Cell》1987,51(5):851-860
The ability of gap junction antibodies to block dye transfer and electrical coupling was examined in the compacted 8-cell mouse zygote. In control zygotes, Lucifer yellow injected into 1 cell transferred to the rest of the embryo. When antibodies raised against the major protein extracted from gap junctions were co-injected with Lucifer yellow, dye transfer failed in 86% of the zygotes tested and electrical coupling was almost completely inhibited. Subsequently, the antibody-containing cells were extruded. When the antibodies were injected into 1 cell at the 2-cell stage, 82% of the zygotes divided normally to the 8-cell stage. Cells containing gap junction antibodies were uncompacted, but continued to divide. We conclude that these antibodies inhibit gap junctional communication in the early mouse zygote and that communication through gap junctions may be involved in the maintenance of compaction.  相似文献   

12.
The individual blastomeres of the preimplantation mouse embryo become polarized during the 8-cell stage. Microvilli become restricted to the free surface of the embryo and this region of the membrane shows increased labeling with FITC-Con A and trinitrobenzenesulfonate (TNBS). Previous studies have shown that this polarity develops in response to asymmetric cell-cell contact with stage specific induction competent blastomeres. In the present study, the ability of later stage embryos to induce 8-cell polarization has been investigated. Newly-formed, nonpolar 8-cell stage blastomeres (1/8 cells) were isolated, then aggregated with morulae, inner cell clusters (from morulae), blastocysts, or inner cell masses (ICM) and cultured for 8 hr. Aggregates were then assayed for polarity. The results show a hierarchy of inducing ability, with the ICM and IC cluster possessing greater activity than the morula and polar trophectoderm of the early blastocyst, while the mural trophectoderm shows very little inducing activity. Furthermore, the inducing ability of the polar trophectoderm decreases with complete expansion and hatching of the blastocyst. These results indicate that the ability to induce 8-cell blastomere polarization is retained by the embryo beyond the 8-cell stage and that this ability is lost with further differentiation.  相似文献   

13.
In early embryos of molluscs, different clones of successively determined trochoblasts differentiate into prototroch cells and together contribute to the formation of a ciliated ring of cells known as the prototroch. Trochoblasts differentiate after cell cycle arrest, which occurs two cell cycles after the commitment of their stem cell. To study the changes of junctional communication in embryos of Patella vulgata in relation to commitment, cell cycle arrest, and differentiation of the trochoblasts, we have monitored electrical coupling as well as transfer of fluorescent dyes. The appearance of dye coupling in embryos of Patella occurs after the fifth cleavage (at the 32-cell stage), when the cell cycles of all embryonic cells become asynchronous and longer. At the 32- and 64-cell stages all cells are well coupled. However, after the 72-cell stage dye transfer to or from any cell of the four interradial clones of four primary trochoblasts becomes abruptly reduced, whereas electrical coupling between these cells and the rest of the embryo can still be detected. From scanning electron microscopical analysis of the cell pattern we conclude that this change in gap junctional communication coincides with cell cycle arrest and with the development of cilia in all four clones of primary trochoblasts. Similarly, after the 88-cell stage the four radial clones of accessory trochoblasts stop dividing, reduce cell coupling, and become ciliated. By the formation of the prototroch, the embryo becomes subdivided into an anterior (pretrochal) and a posterior (posttrochal) domain which will develop different structures of the adult. At the 88-cell stage, the cells within each of these two domains remain well coupled and form two different communication compartments that are separated from each other by the interposed ring of uncoupled trochoblasts. The relations among control of cell cycle, changes in junctional communication, and differentiation are discussed.  相似文献   

14.
Communication compartments in the gastrulating mouse embryo   总被引:8,自引:1,他引:7       下载免费PDF全文
We characterized the pattern of gap junctional communication in the 7.5-d mouse embryo (at the primitive streak or gastrulation stage). First we examined the pattern of dye coupling by injecting the fluorescent tracers, Lucifer Yellow or carboxyfluorescein, and monitoring the extent of dye spread. These studies revealed that cells within all three germ layers are well coupled, as the injected dye usually spread rapidly from the site of impalement into the neighboring cells. The dye spread, however, appeared to be restricted at specific regions of the embryo. Further thick section histological analysis revealed little or no dye transfer between germ layers, indicating that each is a separate communication compartment. The pattern of dye movement within the embryonic ectoderm and mesoderm further suggested that cells in each of these germ layers may be subdivided into smaller communication compartments, the most striking of which are a number of "box-like" domains. Such compartments, unlike the restrictions observed between germ layers, are consistently only partially restrictive. In light of these results, we further monitored ionic coupling to determine if some coupling might nevertheless persist between germ layers. For these studies, Lucifer Yellow was coinjected while ionic coupling was monitored. The injected Lucifer Yellow facilitated the identification of the impalement sites, both in the live specimen and in thick sections in the subsequent histological analysis. By using this approach, all three germ layers were shown to be ionically coupled, indicating that gap junctional communication is maintained across the otherwise dye-uncoupled "germ layer compartments." Thus our results demonstrate that partially restrictive communication compartments are associated with the delamination of germ layers in the gastrulating mouse embryo. The spatial distribution of these compartments are consistent with a possible role in the underlying development.  相似文献   

15.
Junctions in developing mammalian embryos were investigated with lanthanum tracer and freeze-fracture methods. The outermost blastomeres of mouse morulae possess focal tight junctions which become zonular and exclude lanthanum, thereby separating the “inner” cells from the maternal environment. This compartmentalization, creating a microenvironment inside the embryo, may be required for cell determination and for the accumulation of fluid during blastocoel expansion. Desmosomes appear for the first time at the blastocyst stage in the trophoblast junctional complex which also is characterized by gap junctions and a zonula occludens with underlying microfilament-like material and microtubules. Both gap and tight junctions have been visualized in freeze-fracture replicas of rabbit blastocysts. The zonula occludens forms a permeability barrier which is consistent with the high transtrophoblast electrical resistance. Mouse presumptive and mature inner cell mass (ICM) cells were associated by frequent gap junctions whereas junctional complexes were absent. Trophoblast gap and adhering junctions and cytoplasmic processes appeared to fix the ICM to one pole of the embryo and partially isolate it from the blastocoel. These findings support the idea that the ICM and trophoblast communicate upon implantation and require that the intercellular junctions between them be dissembled if the ICM is to migrate to a mesometrial position.  相似文献   

16.
In vivo bovine embryos were obtained by nonsurgical flushing of uterine horns of cows submitted to superovulatory treatment, while in vitro embryos were generated from oocytes collected from slaughtered donors. Lucifer Yellow injected into single blastomeres did not diffuse into neighboring cells until the morula stage in in vivo embryos and the blastocyst stage in in vitro embryos. In both cases diffusion was limited to a few cells. In contrast, diffusion was extensive in microsurgically isolated inner cell mass (ICM) but absent in the trophectoderm (TE). At the blastocyst stage, diffusion was always more extensive in in vivo than in in vitro embryos. Ultrastructural analyses confirmed these functional observations, and gap junction-like structures were observed at the blastocyst stage. These structures were diffuse in the ICM of in vivo embryos, scarce in the ICM of in vitro embryos and in the TE of in vivo embryos, and not observed in the TE of in vitro embryos. Blastomeres at all stages of development from the 2-cell stage to the blastocyst stage in in vitro embryos and at the morula and blastocyst stage in in vivo embryos were electrically coupled, and the junctional conductance (Gj) decreased in in vitro embryos from 4.18 +/- 1.70 nS (2-cell stage) to 0.37 +/- 0.12 nS (blastocyst stage). At each developmental stage, in vivo embryos showed a significantly (P < 0. 05) higher Gj than in vitro-produced embryos. Moreover, a significantly (P < 0.01) higher Gj was found in isolated ICM than in the respective blastocyst in both in vivo- and in vitro-produced embryos (3.5 +/- 1.4 vs. 0.7 +/- 0.3 and 2.6 +/- 1.6 vs. 0.37 +/- 0. 12 nS, respectively). The electrical coupling in absence of dye coupling in the early bovine embryo agrees with observations for embryos from other phyla. The late and reduced expression of intercellular communicative devices in in vitro-produced embryos may be one of the factors explaining their developmental low efficiency.  相似文献   

17.
Sixteen inner or outer blastomeres from 16-cell embryos and 32 inner or outer blastomeres from 32-cell embryos (nascent blastocysts) were reaggregated and cultured in vitro. In 24 h old blastocysts developed from blastomeres derived from 16-cell embryos the expression of Cdx2 protein was upregulated in outer cells (new trophectoderm) of the inner cells-derived aggregates and downregulated in inner cells (new inner cell mass) of the external cells-derived aggregates. After transfer to pseudopregnant recipients blastocysts originating from both inner and outer blastomeres of 16-cell embryo developed into normal, fertile mice, but the implantation rate of embryos formed from inner cell aggregates was lower. The aggregates of external blastomeres derived from 32 cell embryo usually formed trophoblastic vesicles accompanied by vacuolated cells. In contrast, the aggregates of inner blastomeres quickly compacted but cavitation was delayed. Although in the latter embryos the Cdx2 protein appeared in the new trophectoderm within 24 h of in vitro culture, these embryos formed only very small outgrowths of Troma1-positive giant trophoblastic cells and none of these embryos was able to implant in recipient females. In separate experiment we have produced normal and fertile mice from 16- and 32-cell embryos that were first disaggregated, and then the sister outer and inner blastomeres were reaggregated at random. In blastocysts developed from aggregates, within 24 h of in vitro culture, the majority of inner and outer blastomeres located themselves in their original position (internally and externally), which implies that in these embryos development was regulated mainly by cell sorting.  相似文献   

18.
19.
20.
We studied the developmental potential of single blastomeres from early cleavage mouse embryos. Eight- and sixteen-cell diploid mouse embryos were disaggregated and single blastomeres from eight-cell embryos or pairs of sister blastomeres from sixteen-cell embryos were aggregated with 4, 5 or 6 tetraploid blastomeres from 4-cell embryos. Each diploid donor embryo gave eight sister aggregates, which later were manipulated together as one group (set). The aggregates were cultured in vitro until the blastocyst stage, when they were transferred (in sets) to the oviducts of pseudopregnant recipients. Eighteen live foetuses or pups were obtained from the transfer (11.0% of transferred blastocysts) and out of those, eleven developed into fertile adults (one triplet, one pair of twins and four singletons). In all surviving adults, pups and living foetuses, only diploid cells were detected in their organs and tissues as shown by analysis of coat pigmentation and distribution of glucose phosphate isomerase isoforms. In order to explain the observed high rate of mortality of transferred blastocysts, in an accompanying experiment, the diploid and tetraploid blastomeres were labelled with different fluorochromes and then aggregated. These experiments showed the diploid cells to be present not only in the inner cell mass (ICM) but also in the trophectoderm. The low number of diploid cells and the predominance of tetraploid cells in the ICM of chimaeric blastocysts might have been responsible for high postimplantation mortality of our experimental embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号