首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

2.
A structural characterization of bound water molecules in the cyclic tetrasaccharide, cyclo-{-->6}-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->), was carried out by NMR spectroscopy. H-1', 2'-OH, H-3', and 4'-OH of the 3-O-glycosylated residue and H-1 of the 6-O-glycosylated residue were found to cross-relax with protons of bound waters using the double-pulsed field-gradient spin-echo ROESY experiment. In the crystal structure, one water molecule is located in the center of the plate, and its temperature factor is very low, indicating that this water molecule is an intrinsic component.  相似文献   

3.
A novel glucanotransferase, involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}], from starch, was purified to homogeneity from the culture supernatant of Bacillus circulans AM7. The pI was estimated to be 7.5. The molecular mass of the enzyme was estimated to be 184 kDa by gel filtration and 106 kDa by SDS-PAGE. These results suggest that the enzyme forms a dimer structure. It was most active at pH 4.5 to 8.0 at 50 degrees C, and stable from pH 4.5 to 9.0 at up to 35 degrees C. The addition of 1 mM Ca(2+) enhanced the thermal stability of the enzyme up to 40 degrees C. It acted on maltooligosaccharides that have degrees of polymerization of 3 or more, amylose, and soluble starch, to produce ICG5 by an intramolecular alpha-1,6-glycosyl transfer reaction. It also catalyzed the transfer of part of a linear oligosaccharide to another oligosaccharide by an intermolecular alpha-1,4-glycosyl transfer reaction. Thus the ICG5-forming enzyme was found to be a novel glucanotransferase. We propose isocyclomaltooligosaccharide glucanotransferase (IGTase) as the trivial name of this enzyme.  相似文献   

4.
Lactobacillus reuteri strain 121 produces a unique, highly branched, soluble glucan in which the majority of the linkages are of the alpha-(1-->4) glucosidic type. The glucan also contains alpha-(1-->6)-linked glucosyl units and 4,6-disubstituted alpha-glucosyl units at the branching points. Using degenerate primers, based on the amino acid sequences of conserved regions from known glucosyltransferase (gtf) genes from lactic acid bacteria, the L. reuteri strain 121 glucosyltransferase gene (gtfA) was isolated. The gtfA open reading frame (ORF) was 5,343 bp, and it encodes a protein of 1,781 amino acids with a deduced M(r) of 198,637. The deduced amino acid sequence of GTFA revealed clear similarities with other glucosyltransferases. GTFA has a relatively large variable N-terminal domain (702 amino acids) with five unique repeats and a relatively short C-terminal domain (267 amino acids). The gtfA gene was expressed in Escherichia coli, yielding an active GTFA enzyme. With respect to binding type and size distribution, the recombinant GTFA enzyme and the L. reuteri strain 121 culture supernatants synthesized identical glucan polymers. Furthermore, the deduced amino acid sequence of the gtfA ORF and the N-terminal amino acid sequence of the glucosyltransferase isolated from culture supernatants of L. reuteri strain 121 were the same. GTFA is thus responsible for the synthesis of the unique glucan polymer in L. reuteri strain 121. This is the first report on the molecular characterization of a glucosyltransferase from a Lactobacillus strain.  相似文献   

5.
The conformation of maltose-type oligomers in water and in dimethylsulfoxide (Me2SO) was studied using two-dimensional NMR spectra. In Me2SO all of the oligomers have a 1a-type conformation. In water, they tend to adopt the same conformation, but the oligomers are looser and more flexible than in Me2SO.  相似文献   

6.
Rockey WM  Laederach A  Reilly PJ 《Proteins》2000,40(2):299-309
The Lamarckian genetic algorithm of AutoDock 3.0 was used to dock alpha-maltotriose, methyl alpha-panoside, methyl alpha-isopanoside, methyl alpha-isomaltotrioside, methyl alpha-(6(1)-alpha-glucopyranosyl)-maltoside, and alpha-maltopentaose into the closed and, except for alpha-maltopentaose, into the open conformation of the soybean beta-amylase active site. In the closed conformation, the hinged flap at the mouth of the active site closes over the substrate. The nonreducing end of alpha-maltotriose docks preferentially to subsites -2 or +1, the latter yielding nonproductive binding. Some ligands dock into less optimal conformations with the nonreducing end at subsite -1. The reducing-end glucosyl residue of nonproductively-bound alpha-maltotriose is close to residue Gln194, which likely contributes to binding to subsite +3. In the open conformation, the substrate hydrogen-bonds with several residues of the open flap. When the flap closes, the substrate productively docks if the nonreducing end is near subsites -2 or -1. Trisaccharides with alpha-(1-->6) bonds do not successfully dock except for methyl alpha-isopanoside, whose first and second glucosyl rings dock exceptionally well into subsites -2 and -1. The alpha-(1-->6) bond between the second and third glucosyl units causes the latter to be improperly positioned into subsite +1; the fact that isopanose is not a substrate of beta-amylase indicates that binding to this subsite is critical for hydrolysis.  相似文献   

7.
Li A  Zeng Y  Kong F 《Carbohydrate research》2004,339(3):673-681
An octasaccharide, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->2)]-beta-D-Galp-(1-->6)-beta-D-Galp-1-->OMP was synthesized. 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (9), and 4-methoxyphenyl 2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (11), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (12), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (17) were used as the synthons. A concise route was used to gain the tetrasaccharide donor 19 by the use of 11, 12, 5, and 17. Meanwhile, treatment of 5 with 9 yielded beta-(1-->6)-linked disaccharide 20, and subsequent selective 6-O-deacetylation produced the disaccharide acceptor 21. Reaction of 21 with 19 gave 22, and subsequent selective 2-O-deacetylation afforded the hexasaccharide acceptor 23. Condensation of 23 with alpha-L-(1-->5)-linked arabinofuranose disaccharide 24, followed by deprotection, yielded the target octasaccharide.  相似文献   

8.
Mei X  Heng L  Fu M  Li Z  Ning J 《Carbohydrate research》2005,340(15):2345-2351
A concise and effective synthesis of lauryl heptasaccharide 17 was achieved from the key intermediates lauryl 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-beta-D-glucopyranosyl-(1-->3)-2,4-di-O-benzoyl-beta-D-glucopyranoside (10) and isopropyl 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-beta-D-glucopyranosyl-(1-->3)-2,4,6-tri-O-acetyl-1-thio-beta-D-glucopyranoside (15). The key trisaccharide glycosyl acceptor 10 was constructed by coupling 2,3,4,6-tetra-O-benzoyl-beta-D-galactopyranosyl-(1-->4)-2,3,6-tri-O-benzoyl-alpha-D-glucopyranosyl trichloroacetimidate (3) with lauryl 6-O-acetyl-2,4-di-O-benzoyl-beta-D-glucopyranoside (9), followed by deacetylation. The thioglycoside donor 15 was obtained by condensation of 2,4,6-tri-O-acetyl-3-O-allyl-beta-D-glucopyranosyl-(1-->3)-[2,3,4,6-tetra-O-benzoyl-beta-D-glucopyranosyl-(1-->6)]-2,4-di-O-acetyl-alpha-D-glucopyranosyl trichloroacetimidate (11) with isopropyl 4,6-O-benzylidene-1-thio-beta-D-glucopyranoside (12), followed by debenzylidenation and acetylation. A bioassay of the inhibition of S180 noumenal tumors showed that lauryl heptasaccharide 17 could be employed as a potential agent for cancer treatment.  相似文献   

9.
4-methoxyphenyl glycosides of 2,3'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl tetraose (16), 3',2'-bis-alpha-L-arabinofuranosyl branched beta-D-(1-->6)-linked galactopyranosyl hexaose (27), and a twentyose (42) consisting of beta-(1-->6)-linked D-galactopyranosyl pentadecaoligosaccharide backbone with alpha-L-arabinofuranosyl side chains alternately attached at C-2 and C-3 of the middle galactose residue of each consecutive beta-(1-->6)-linked galactotriose unit of the backbone, were synthesized with isopropyl 3-O-allyl-2,4-di-O-benzoyl-1-thio-beta-D-galactopyranoside (6), 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (7), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (12), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (17), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (19), and 2,6-di-O-acetyl-3,4-di-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (28) as the key synthons. Condensation of 6 with 7 gave the disaccharide donor 8, and subsequent condensation of 8 with 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranosyl-(1-->6)-2-O-acetyl-3,4-di-O-benzoyl-beta-D-galactopyranoside (9) followed by selective deacetylation afforded the tetrasaccharide acceptor 11. Coupling of 11 with 12 gave the pentasaccharide 13, its deallylation followed by coupling with 12, and debenzoylation gave the hexasaccharide 16 with beta-(1-->6)-linked galactopyranose backbone and 2- and 3'-linked alpha-L-arabinofuranose side chains. The octasaccharide 27 was similarly synthesized, while the twentyoside 42 was synthesized with tetrasaccharides 33 or 24 as the donors and 23, 36, 38, and 40 as the acceptors by consecutive couplings followed by deacylation.  相似文献   

10.
A beta-(1-->6)-branched beta-(1-->3)-glucohexaose, present in many biologically active polysaccharides from traditionally herbal medicines such as Ganoderma lucidum, Schizophyllum commune and Lentinus edodes, was synthesized as its lauryl glycoside 32, and its analogues 18, 20 and 33 containing an alpha-(1-->3) linked bond were synthesized. It is interesting to find that coupling of a 3,6-branched acylated trisaccharide trichloroacetimidate donor 9 with 3,6-branched acceptors 13 and 16 with 3'-OH gave the alpha-(1--> 3)-linked hexasaccharides 17 and 19, respectively, in spite of the presence of C-2 ester capable of neighboring group participation. However, coupling of 9 with 4-methoxyphenyl 4,6-O-benzylidene-beta-D-glucopyranoside (27) selectively gave beta-(1-->3)-linked tetrasaccharide 28. Simple chemical transformation of the tetrasaccharide 28 gave acylated tetrasaccharide trichloroacetimidate 29. Coupling of 29 with lauryl (1-->6)-linked disaccharide 26 with 3-OH gave beta-(1-->3)-linked hexasaccharide 30 as the major product. Bioassay showed that in combination with the chemotherapeutic agent cyclophospamide (CPA), the hexaose 18 at a dose of 0.5-1mg/kg substantially increased the inhibition of S(180) for CPA, but decreased the toxicity caused by CPA. Some of these oligosaccharides also inhibited U(14) noumenal tumor in mice effectively.  相似文献   

11.
Four exopolysaccharides (EPS) obtained from Botryosphaeria rhodina strains isolated from rotting tropical fruit (graviola, mango, pinha, and orange) grown on sucrose were purified on Sepharose CL-4B. Total acid hydrolysis of each EPS yielded only glucose. Data from methylation analysis and (13)C NMR spectroscopy indicated that the EPS from the graviola isolate consisted of a main chain of glucopyranosyl (1-->3) linkages substituted at O-6 as shown in the putative structure below: [carbohydrate structure: see text]. The EPS of the other fungal isolates consisted of a linear chain of (1-->6)-linked glucopyranosyl residues of the following structure: [carbohydrate structure: see text]. FTIR spectra showed one band at 891 cm(-1), and (13)C NMR spectroscopy showed that all glucosidic linkages were of the beta-configuration. Dye-inclusion studies with Congo Red indicated that each EPS existed in a triple-helix conformational state. beta-(1-->6)-d-Glucans produced as exocellular polysaccharides by fungi are uncommon.  相似文献   

12.
The exopolysaccharide, Botryosphaeran, produced by the ligninolytic, ascomyceteous fungus Botryosphaeria sp., was isolated from the extracellular fluid by precipitation with ethanol, and purified by gel permeation chromatography to yield a carbohydrate-rich fraction (96%) composed mainly of glucose (98%). Infra-red and 13C NMR spectroscopy showed that all the glucosidic linkages were in the beta-configuration. Data from methylation analysis and Smith degradation indicated that Botryosphaeran was a (1-->3)-beta-D-glucan with approx 22% side branching at C-6. The products obtained from partial acid hydrolysis demonstrated that the side branches consisted of single (1-->6)-beta-linked glucosyl, and (1-->6)-beta-linked gentiobiosyl residues.  相似文献   

13.
Wu Z  Kong F 《Carbohydrate research》2004,339(17):2761-2768
Hexaose, beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-alpha-D-Glcp-(1-->3)-beta-D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp, based dimers were synthesized by twofold glycosidation of the hexaosyl trichloroacetimidate with hexylene 1,6-diol, diethylene glycol and triethylene glycol, respectively. Meanwhile, a triose, beta-1D-Glcp-(1-->3)-[beta-D-Glcp-(1-->6)]-beta-D-Glcp, based trimer was obtained by glycosidation of the triosyl trichloroacetimidate with a glycerol-derived triol scaffold.  相似文献   

14.
A glucan that was soluble in aqueous sodium chloride was isolated from the aqueous extract of the fruiting bodies of Pleurotus florida. On the basis of total hydrolysis, methylation analysis, periodate oxidation, Smith degradation, and NMR studies (1H, 13C, TOCSY, DQF-COSY, NOESY, and HSQC), the structure of the repeating unit of the polysaccharide is established as: This glucan stimulates the phagocytic activity of macrophages.  相似文献   

15.
An efficient synthesis of beta-D-GlcpNAc-(1-->3)-alpha-L-Rhap-(1-->2)-[beta-L-Xylp-(1-->4)]-alpha-L-Rhap-(1-->3)-alpha-L-Rhap, the repeating unit of the O-antigen produced by Pseudomonas solanacearum ICMP 7942 and its isomer beta-D-GlcpNAc-(1-->3)-alpha-L-Rhap-(1-->4)-[beta-L-Xylp-(1-->2)]-alpha-L-Rhap-(1-->3)-alpha-L-Rhap was achieved via sequential assembly of the building blocks, allyl 2,3-O-isopropylidene-alpha-L-rhamnopyranoside (2), allyl 3,4-O-isopropylidene-alpha-L-rhamnopyranoside (3), allyl 2,4-di-O-benzoyl-alpha-L-rhamnopyranoside (6), 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl trichloroacetimidate (7), and 2,3,4-tri-O-benzoyl-beta-L-xylopyranosyl trichloroacetimidate (12). The process was carried out in a regio- and stereoselective manner using glycosyl trichloroacetimidates as donors and unprotected or partially protected rhamnopyranosides as acceptors in the presence of a catalytic amount of trimethylsilyl trifluoromethanesulfonate (TMSOTf).  相似文献   

16.
Choi Y  Jung S 《Carbohydrate research》2005,340(16):2550-2557
Molecular dynamics simulations were performed to explain the conformational effect of an alpha-(1-->6)-glycosidic linkage upon the cyclic osmoregulated periplasmic glucan (OPG) produced by Xanthomonas campestris pv. citri. We suggest that a single alpha-(1-->6)-glycosidic linkage in cyclic OPG functions as a novel entropic regulator, which reduces the conformational entropy of cyclic OPG and increases the motional entropy of solvent water molecules.  相似文献   

17.
Extraction of Dictyonema glabratum with hot 2% (w/v) aqueous KOH at 100 degrees C, followed by neutralisation and freeze-thawing, gave an insoluble glucan. The residue was further extracted by a similar process, but with hot 10% (w/v) aqueous KOH, furnishing a mixture of glucan, mannan and xylan. The mannan and xylan were obtained via precipitation of its copper complex with Fehling's solution, leaving the glucan in the supernatant. The insoluble complex was finally purified through gel permeation chromatography. Methylation analysis, one- and two-dimensional nuclear magnetic resonance examination showed the polysaccharides to be a (1-->3)-linked alpha-glucan (pseudonigeran) and a (1-->4)-linked beta-xylan, both not previously encountered in lichens, and a newly discovered (1-->6)-linked beta-mannan.  相似文献   

18.
Li A  Kong F 《Carbohydrate research》2004,339(11):1847-1856
Two arabinogalactosyl nonasaccharides, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp and beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp, were synthesized as their 4-methoxyphenyl glycosides with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (14), 4-methoxyphenyl 3-O-allyl-2,4-di-O-benzoyl-beta-D-galactopyranoside (2), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (8), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl-(1-->5)-2,3-di-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (11), as the key synthons. The tetra- (10) and pentasaccharide donor (13), and the tetra- (20) and pentasaccharide acceptor (22) were synthesized based on these synthons through simple transformations. Coupling of 22 with 10, and coupling of 20 with 13 and subsequent deacylation gave nonasaccharides 24 and 26, respectively, consisting of beta-(1-->6)-linked glactopyranosyl backbone and alpha-(1-->3)-linked arabinofuranosyl side chains of different size.  相似文献   

19.
In a previous article [Carbohydr. Res.2001, 331, 163-171] two different structures for the possible modular repeating unit of the extracellular beta-glucan, epiglucan produced by the fungus Epicoccum nigrum strain F19 were proposed. Clarifying which was the more likely one was considered essential before attempts were made to understand how epiglucan was assembled by this fungus. Data from Smith degradation analyses of epiglucan were consistent with the repeating unit of structure I, where single glucosyl residues are attached by (1-->6)-beta-linkages to two out of every three glucosyl residues in the (1-->3)-beta-linked glucan backbone. Repeated Smith degradations of 14C-glucose labelled epiglucan showed that chain elongation occurred from its non-reducing end. Side chain insertion into the growing glucan was followed by analysis of real time incorporation of 13C-glucose into epiglucan by 13C NMR, and 14C-glucose by enzymic digestion of the synthesised 14C-epiglucan. All data obtained were consistent with the view that single (1-->6)-beta-linked glucosyl side residues are inserted simultaneously as the glucan backbone elongates.  相似文献   

20.
The chemical synthesis of the title compounds as maltose analogs, in which the non-reducing end is modified by acetylation of the 4'-OH group or by reversing its configuration, is reported. For synthesis of the 4'-O-acetylated analog, beta-maltose was converted into its per-O-benzylated-4',6'-O-benzylidene derivative followed by removal of the benzylidene acetal function and selective silylation at C-6'. Acetylation at C-4' of the obtained silylated compound followed by removal of the benzyl ether protecting groups and subsequent desilylation afforded the desired analog. The other maltose analog was synthesized via the glycosidation reaction between the glycosyl donor, O-(2,3,4,6-tetra-O-benzyl-alpha/beta-D-galactopyranosyl)trichloroacetimidate and the glycosyl acceptor, phenyl 2,3,6-tri-O-benzyl-1-thio-beta-D-glucopyranoside followed by removal of the phenylthio group and debenzylation to provide the desired analog.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号