首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus cereus and its food poisoning toxins   总被引:9,自引:0,他引:9  
  相似文献   

2.
Detection of the full set of toxin encoding genes involved in gastrointestinal diseases caused by B. cereus was performed. Eight genes determining the B. cereus pathogenicity, which results in diarrhea or emesis, were simultaneously evaluated on a 16-position electrical chip microarray. The DNA analyte preparation procedure comprising first 5 min of ultrasonic treatment, DNA extraction, and afterwards an additional 10 min sonication, was established as the most effective way of sample processing. No DNA amplification step prior to the analysis was included. The programmed assay was carried out within 30 min, once the DNA analyte from 10(8) bacterial cells, corresponding to one agar colony, was subjected to the assay. In general, this work represents a mature analytical way for DNA review. It can be used under conditions that require almost immediate results.  相似文献   

3.
Aims:  To evaluate different methods that are useful for rapid and definitive discrimination of Bacillus anthracis from other bacteria of the Bacillus cereus group in environmental samples like letters claimed to contain anthrax spores.
Methods and Results:  Characterized strains and bacteria from environmental samples were analysed by microbiological and molecular methods (PCR and restriction analysis). Environmental isolates often shared several microbiological features with B. anthracis , e.g. lack of β -haemolysis and phospholipase C activity, and only the gamma phage assay was specific for B. anthracis . PCR assays targeting markers from the virulence plasmids exclusively detected B. anthracis , but other PCR targets were also detected in nonanthrax isolates. Additionally, the restriction pattern in an Alu I restriction analysis of the SG-749 fragment is not 100% specific. The loci used for multiple-locus variable-number tandem repeat analysis of B. anthracis are also present in other members of the B. cereus group, but amplicon sizes are usually different.
Conclusions:  Environmental samples often contain borderline isolates closely related to B. anthracis both on microbiological and genetic levels. Real-time PCR targeting plasmidal and chromosomal markers should be used for rapid and definitive exclusion of a virulent strain of B. anthracis in such samples.
Significance and Impact of the Study:  This study gives an overview of the current microbiological and molecular methods used for identification of B. anthracis and shows that most assays have limits when borderline isolates present in environmental samples are analysed.  相似文献   

4.
A total of 333 Bacillus spp. isolated from foods, water, and food plants were examined for the production of possible enterotoxins and emetic toxins using a cytotoxicity assay on Vero cells, the boar spermatozoa motility assay, and a liquid chromatography-mass spectrometry method. Eight strains produced detectable toxins; six strains were cytotoxic, three strains produced putative emetic toxins (different in size from cereulide), and one strain produced both cytotoxin(s) and putative emetic toxin(s). The toxin-producing strains could be assigned to four different species, B. subtilis, B. mojavensis, B. pumilus, or B. fusiformis, by using a polyphasic approach including biochemical, chemotaxonomic, and DNA-based analyses. Four of the strains produced cytotoxins that were concentrated by ammonium sulfate followed by dialysis, and two strains produced cytotoxins that were not concentrated by such a treatment. Two cultures maintained full cytotoxic activity, two cultures reduced their activity, and two cultures lost their activity after boiling. The two most cytotoxic strains (both B. mojavensis) were tested for toxin production at different temperatures. One of these strains produced cytotoxin at growth temperatures ranging from 25 to 42 degrees C, and no reduction in activity was observed even after 24 h of growth at 42 degrees C. The strains that produced putative emetic toxins were tested for the influence of time and temperature on the toxin production. It was shown that they produced putative emetic toxin faster or just as fast at 30 as at 22 degrees C. None of the cytotoxic strains produced B. cereus-like enterotoxins as tested by PCR or by immunological methods.  相似文献   

5.
6.
From soil to gut: Bacillus cereus and its food poisoning toxins   总被引:2,自引:0,他引:2  
Bacillus cereus is widespread in nature and frequently isolated from soil and growing plants, but it is also well adapted for growth in the intestinal tract of insects and mammals. From these habitats it is easily spread to foods, where it may cause an emetic or a diarrhoeal type of food-associated illness that is becoming increasingly important in the industrialized world. The emetic disease is a food intoxication caused by cereulide, a small ring-formed dodecadepsipeptide. Similar to the virulence determinants that distinguish Bacillus thuringiensis and Bacillus anthracis from B. cereus, the genetic determinants of cereulide are plasmid-borne. The diarrhoeal syndrome of B. cereus is an infection caused by vegetative cells, ingested as viable cells or spores, thought to produce protein enterotoxins in the small intestine. Three pore-forming cytotoxins have been associated with diarrhoeal disease: haemolysin BL (Hbl), nonhaemolytic enterotoxin (Nhe) and cytotoxin K. Hbl and Nhe are homologous three-component toxins, which appear to be related to the monooligomeric toxin cytolysin A found in Escherichia coli. This review will focus on the toxins associated with foodborne diseases frequently caused by B. cereus. The disease characteristics are described, and recent findings regarding the associated toxins are discussed, as well as the present knowledge on virulence regulation.  相似文献   

7.
The toxicity of Bacillus thuringiensis subsp. israelensis to dipteran larvae (mosquitoes and black flies) depends on the presence of the pBtoxis plasmid. In this paper, two antibiotic resistance tagged pBtoxis were transferred by conjugation to other Bacillus cereus group strains. Among 15 potential recipients, only a lepidopteran active B. thuringiensis subspecies kurstaki and a B. cereus strain received the plasmid pBtoxis with a low transfer rate of about 10(-8) transconjugants/recipient. The resulting B. thuringiensis subspecies kurstaki transconjugant was active to both lepidopteran and dipteran targets and the B. cereus transconjugant was active against dipteran insects. Phase contrast microscopy showed that the B. cereus transconjugants could produce only round crystalline inclusion bodies while B. thuringiensis subspecies kurstaki transconjugant could produce both round and bipyramidal crystals during sporulation. SDS-PAGE revealed that all the major mosquitocidal proteins from pBtoxis could express in the two transconjugants, including Cry4Aa, Cry4Ba, Cry10Aa, Cry11Aa and Cyt1Aa. However, none of the experiment showed any indications of mobilising abilities of pBtoxis. The limited number of strains, which could receive and maintain pBtoxis using a conjugational helper plasmid, indicates a very narrow host range of the B. thuringiensis subsp. israelensis pBtoxis plasmid.  相似文献   

8.
Aim: To assess the dynamics of plasmid transfer between Bacillus thuringiensis and B. cereus in various food microcosms using the B. thuringiensis pAW63 and Staphylococcus aureus pUB110 plasmids as models. Methods and Results: The conjugative behaviour of pAW63, which resembles the B. anthracis virulence plasmid pXO2, and the mobilization of pUB110 were investigated using kinetics studies performed in reference LB (lysogeny broth) medium, full‐cream and skimmed milks, soya milk and rice milk. Transfers of pAW63 and pUB110 were found to occur in the five tested media, with higher frequencies observed in food matrices, most notably in full‐cream milk, skimmed milk and soya milk, where the mean transfer frequencies reached 10?3 transconjugants per recipient cell. The most notable observations were that the higher transfer frequencies obtained in foodstuffs compared to those observed in LB were because of an earlier onset of conjugation in combination with a higher transfer rate and/or a longer mating period. Conclusion: These results indicate that not only the potential for plasmid transfer but also the overall timing of conjugation is affected by each of these food matrices. Significance and Impact of the Study: This new approach to study plasmid transfer provides insights for a better understanding of conjugation in food microcosms from both animal and vegetable origins among members of the B. cereus group.  相似文献   

9.
Toxin-producing isolates of Bacillus licheniformis were obtained from foods involved in food poisoning incidents, from raw milk, and from industrially produced baby food. The toxin detection method, based on the inhibition of boar spermatozoan motility, has been shown previously to be a sensitive assay for the emetic toxin of Bacillus cereus, cereulide. Cell extracts of the toxigenic B. licheniformis isolates inhibited sperm motility, damaged cell membrane integrity, depleted cellular ATP, and swelled the acrosome, but no mitochondrial damage was observed. The responsible agent from the B. licheniformis isolates was partially purified. It showed physicochemical properties similar to those of cereulide, despite having very different biological activity. The toxic agent was nonproteinaceous; soluble in 50 and 100% methanol; and insensitive to heat, protease, and acid or alkali and of a molecular mass smaller than 10,000 g mol(-1). The toxic B. licheniformis isolates inhibited growth of Corynebacterium renale DSM 20688(T), but not all inhibitory isolates were sperm toxic. The food poisoning-related isolates were beta-hemolytic, grew anaerobically and at 55 degrees C but not at 10 degrees C, and were nondistinguishable from the type strain of B. licheniformis, DSM 13(T), by a broad spectrum of biochemical tests. Ribotyping revealed more diversity; the toxin producers were divided among four ribotypes when cut with PvuII and among six when cut with EcoRI, but many of the ribotypes also contained nontoxigenic isolates. When ribotyped with PvuII, most toxin-producing isolates shared bands at 2.8 +/- 0.2, 4.9 +/- 0.3, and 11.7 +/- 0.5 or 13.1 +/- 0.8 kb.  相似文献   

10.
11.
The authors describe an outbreak of food poisoning caused by Bac. cereus embracing 80% of persons who catered at the same catering establishment. The poisoning occurred in the course of 15 hours after the moment of eating a sauce stored in warm place. In the majority of cases the course of the disease was mild; 77.8% of the patients displayed phenomena of enteritis, 20.2%--of entercolitis, and 2.0%--of gastroenterocolitis. All the patients recovered without any treatment in the course of 1--2 days.  相似文献   

12.
Members of the Bacillus cereus group contain cell wall carbohydrates that vary in their glycosyl compositions. Recent multilocus sequence typing (MLST) refined the relatedness of B. cereus group members by separating them into clades and lineages. Based on MLST, we selected several B. anthracis, B. cereus, and B. thuringiensis strains and compared their cell wall carbohydrates. The cell walls of different B. anthracis strains (clade 1/Anthracis) were composed of glucose (Glc), galactose (Gal), N-acetyl mannosamine (ManNAc), and N-acetylglucosamine (GlcNAc). In contrast, the cell walls from clade 2 strains (B. cereus type strain ATCC 14579 and B. thuringiensis strains) lacked Gal and contained N-acetylgalactosamine (GalNAc). The B. cereus clade 1 strains had cell walls that were similar in composition to B. anthracis in that they all contained Gal. However, the cell walls from some clade 1 strains also contained GalNAc, which was not present in B. anthracis cell walls. Three recently identified clade 1 strains of B. cereus that caused severe pneumonia, i.e., strains 03BB102, 03BB87, and G9241, had cell wall compositions that closely resembled those of the B. anthracis strains. It was also observed that B. anthracis strains cell wall glycosyl compositions differed from one another in a plasmid-dependent manner. When plasmid pXO2 was absent, the ManNAc/Gal ratio decreased, while the Glc/Gal ratio increased. Also, deletion of atxA, a global regulatory gene, from a pXO2 strain resulted in cell walls with an even greater level of Glc.  相似文献   

13.
Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp. israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.  相似文献   

14.
The major part (94%) of the Bacillus cereus-like isolates from a Danish sandy loam are psychrotolerant Bacillus weihenstephanensis according to their ability to grow at temperatures below 7 °C and/or two PCR-based methods, while the remaining 6% are B. cereus. The Bacillus mycoides-like isolates could also be␣divided into psychrotolerant and mesophilic isolates. The psychrotolerant isolates of B. mycoides could␣be discriminated from the mesophilic by the two PCR-based methods used to characterize B.␣weihenstephanensis. It is likely that the mesophilic B. mycoides strains are synonymous with Bacillus pseudomycoides, while psychrotolerant B. weihenstephanensis, like B. mycoides, are B. mycoides senso stricto. B. cereus is known to produce a number of factors, which are involved in its ability to cause gastrointestinal and somatic diseases. All the B. cereus-like and B. mycoides like isolates from the sandy loam were investigated by PCR for the presence of 12 genes encoding toxins. Genes for the enterotoxins (hemolysin BL and nonhemolytic enterotoxin) and the two of the enzymes (cereolysin AB) were present in the major part of the isolates, while genes for phospolipase C and hemolysin III were present in fewer isolates, especially among B. mycoides like isolates. Genes for cytotoxin K and the hemolysin II were only present in isolates affiliated to B. cereus. Most of the mesophilic B. mycoides isolates did not possess the genes for the nonhemolytic enterotoxin and the cereolysin AB. The presence of multiple genes coding for virulence factors in all the isolates from the B. cereus group suggests that all the isolates from the sandy loam are potential pathogens.  相似文献   

15.
Several group I introns have been previously found in strains of the Bacillus cereus group at three different insertion sites in the nrdE gene of the essential nrdIEF operon coding for ribonucleotide reductase. Here, we identify an uncharacterized group IA intron in the nrdF gene in 12 strains of the B. cereus group and show that the pre-mRNA is efficiently spliced. The Bacillus thuringiensis ssp. pakistani nrdF intron encodes a homing endonuclease, denoted I-BthII, with an unconventional GIY-(X)8-YIG motif that cleaves an intronless nrdF gene 7 nt upstream of the intron insertion site, producing 2-nt 3′ extensions. We also found four additional occurrences of two of the previously reported group I introns in the nrdE gene of 25 sequenced B. thuringiensis and one B. cereus strains, and one non-annotated group I intron at a fourth nrdE insertion site in the B. thuringiensis ssp. Al Hakam sequenced genome. Two strains contain introns in both the nrdE and the nrdF genes. Phylogenetic studies of the nrdIEF operon from 39 strains of the B. cereus group suggest several events of horizontal gene transfer for two of the introns found in this operon.  相似文献   

16.
Genomics of the Bacillus cereus group of organisms   总被引:11,自引:0,他引:11  
Members of the Bacillus cereus group of organisms include Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis. Collectively, these organisms represent microbes of high economic, medical and biodefense importance. Given this significance, this group contains the highest number of closely related fully sequenced genomes, giving the unique opportunity for thorough comparative genomic analyses. Much of the disease and host specificity of members of this group can be attributed to their plasmids, which vary in size and number. Chromosomes exhibit a high level of synteny and protein similarity, with limited differences in gene content, questioning the speciation of the group members. Genomic data have spurred functional studies that combined microarrays and proteomics. Recent advances are reviewed in this article and highlight the advantages of genomic approaches to the study of this important group of bacteria.  相似文献   

17.
18.
Identification of Bacillus cereus sensu stricto is a challenge for the food industry since it is being increasingly reported as implicated in many foodborne outbreaks. So far no conclusive microbiological or biochemical traits have been described for their specific differentiation. Here a polyphasic approach aiming at identification of new isolates is presented. It was conducted on a total of 75 strains, 59 Bacillus cereus group (29 reference strains and 30 food and environmental isolates) and 16 other Bacillus species. It includes biochemical traits (API 50CH and API 20E) and genetic profiles: PCR amplification of the internal spacer region (ISR) between 23S and 16S rRNA genes (ISR-PCR), randomly amplified polymorphic DNA (RAPD-PCR) with three universal primers (M13, T3, and T7), and PCR amplification using specific primers directed to genes encoding hemolysin BL (hbl), cytotoxin K (cytK) and cereulide (ces). As expected, PCR-enterotoxin profiles revealed the toxigenic potential of strains within the B. cereus group irrespective of the species. Cluster analysis combining the three RAPD fingerprints (RAPD-M13, RAPD-T3 and RAPD-T7) allowed almost a complete separation of strains within the B. cereus group. As a result, the ISR-PCR profile is proposed for the rapid assignation of isolates to B. cereus group with the advantage over the API profile of being a specific and culture-independent technique. Following, differentiation at species level can be obtained by RAPD profiles analysis.  相似文献   

19.
Bacillus cereus strains that are genetically closely related to B. anthracis can display anthrax-like virulence traits (A. R. Hoffmaster et al., Proc. Natl. Acad. Sci. USA 101:8449-8454, 2004). Hence, approaches that rapidly identify these "near neighbors" are of great interest for the study of B. anthracis virulence mechanisms, as well as to prevent the use of such strains for B. anthracis-based bioweapon development. Here, a strategy is proposed for the identification of near neighbors of B. anthracis based on single nucleotide polymorphisms (SNP) in the 16S-23S rRNA intergenic spacer (ITS) containing tRNA genes, characteristic of B. anthracis. By using restriction site insertion-PCR (RSI-PCR) the presence of two SNP typical of B. anthracis was screened in 126 B. cereus group strains of different origin. Two B. cereus strains and one B. thuringiensis strain showed RSI-PCR profiles identical to that of B. anthracis. The sequencing of the entire ITS containing tRNA genes revealed two of the strains to be identical to B. anthracis. The strict relationship with B. anthracis was confirmed by multilocus sequence typing (MLST) of four other independent loci: cerA, plcR, AC-390, and SG-749. The relationship to B. anthracis of the three strains described by MLST was comparable and even higher to that of four B. cereus strains associated with periodontitis in humans and previously reported as the closest known strains to B. anthracis. SNP in ITS containing tRNA genes combined with RSI-PCR provide a very efficient tool for the identification of strains closely related to B. anthracis.  相似文献   

20.
AIM: To determine the autolytic phenotype of five species in the Bacillus cereus group. METHODS AND RESULTS: The autolytic rate of 96 strains belonging to five species in the B. cereus group was examined under starvation conditions at pH 6, 6.5 and 8.5 in different buffers. The autolytic rate was strain-dependent with a wide variability at pH 6, but higher and more uniform at pH 6.5. At pH 8.5, and respect to the extent of autolysis at pH 6.5, it was relatively low for most of the strains with the lowest values between 13 and 52% in Bacillus mycoides and Bacillus pseudomycoides. Peptidoglycan hydrolase patterns evaluated by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis using cells of Bacillus thuringiensis ssp. tolworthi HD125 as an indicator, revealed complex profiles with lytic bands of about 90, 63, 46, 41, 38, 32, 28 and 25 kDa in B. cereus, B. thuringiensis and Bacillus weihenstephanensis. Bacillus mycoides and B. pseudomycoides had simpler profiles with lytic bands of 63, 46 and 38 kDa. Changes in the autolytic pattern were observed for cells harvested at the stationary phase of growth (72 h) showing an increase in the intensity of the 25 kDa band in the case of B. cereus, B. thuringiensis and B. weihenstephanensis, while no changes were observed for B. mycoides. Using Micrococcus lysodeicticus and Listeria monocytogenes as indicators lytic activity was retained by proteins of 63, 46, 38, 32 and 25 kDa and a new one of about 20 kDa in B. mycoides. Growth in the different media did not affect the autolytic pattern. NaCl abolished the activity of all the peptidoglycan hydrolases except for those of B. mycoides and B. weihenstephanensis. Lytic activity was retained in the presence of MgCl(2), MnCl(2) and EDTA and increased at basic pH. CONCLUSIONS: Bacillus cereus/B. thuringiensis/B. weihenstephanensis showed a high extent of autolysis around neutral pH, even though they presented relatively complex autolysin profiles at alkaline pH. Bacillus mycoides/B. pseudomycoides had a higher extent of autolysis at acidic pH and a simpler autolysin pattern. SIGNIFICANCE AND IMPACT OF THE STUDY: Information on the autolytic phenotype expand the phenotypic characterization of the different species in the B. cereus group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号