首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary With advances in modern medicine and clinical diagnosis, case–control data with characterization of finer subtypes of cases are often available. In matched case–control studies, missingness in exposure values often leads to deletion of entire stratum, and thus entails a significant loss in information. When subtypes of cases are treated as categorical outcomes, the data are further stratified and deletion of observations becomes even more expensive in terms of precision of the category‐specific odds‐ratio parameters, especially using the multinomial logit model. The stereotype regression model for categorical responses lies intermediate between the proportional odds and the multinomial or baseline category logit model. The use of this class of models has been limited as the structure of the model implies certain inferential challenges with nonidentifiability and nonlinearity in the parameters. We illustrate how to handle missing data in matched case–control studies with finer disease subclassification within the cases under a stereotype regression model. We present both Monte Carlo based full Bayesian approach and expectation/conditional maximization algorithm for the estimation of model parameters in the presence of a completely general missingness mechanism. We illustrate our methods by using data from an ongoing matched case–control study of colorectal cancer. Simulation results are presented under various missing data mechanisms and departures from modeling assumptions.  相似文献   

2.
Summary.   The present article deals with informative missing (IM) exposure data in matched case–control studies. When the missingness mechanism depends on the unobserved exposure values, modeling the missing data mechanism is inevitable. Therefore, a full likelihood-based approach for handling IM data has been proposed by positing a model for selection probability, and a parametric model for the partially missing exposure variable among the control population along with a disease risk model. We develop an EM algorithm to estimate the model parameters. Three special cases: (a) binary exposure variable, (b) normally distributed exposure variable, and (c) lognormally distributed exposure variable are discussed in detail. The method is illustrated by analyzing a real matched case–control data with missing exposure variable. The performance of the proposed method is evaluated through simulation studies, and the robustness of the proposed method for violation of different types of model assumptions has been considered.  相似文献   

3.
The present article deals with informative missing (IM) exposure data in matched case-control studies. When the missingness mechanism depends on the unobserved exposure values, modeling the missing data mechanism is inevitable. Therefore, a full likelihood-based approach for handling IM data has been proposed by positing a model for selection probability, and a parametric model for the partially missing exposure variable among the control population along with a disease risk model. We develop an EM algorithm to estimate the model parameters. Three special cases: (a) binary exposure variable, (b) normally distributed exposure variable, and (c) lognormally distributed exposure variable are discussed in detail. The method is illustrated by analyzing a real matched case-control data with missing exposure variable. The performance of the proposed method is evaluated through simulation studies, and the robustness of the proposed method for violation of different types of model assumptions has been considered.  相似文献   

4.
In epidemiologic studies, measurement error in the exposure variable can have a detrimental effect on the power of hypothesis testing for detecting the impact of exposure in the development of a disease. To adjust for misclassification in the hypothesis testing procedure involving a misclassified binary exposure variable, we consider a retrospective case–control scenario under the assumption of nondifferential misclassification. We develop a test under Bayesian approach from a posterior distribution generated by a MCMC algorithm and a normal prior under realistic assumptions. We compared this test with an equivalent likelihood ratio test developed under the frequentist approach, using various simulated settings and in the presence or the absence of validation data. In our simulations, we considered varying degrees of sensitivity, specificity, sample sizes, exposure prevalence, and proportion of unvalidated and validated data. In these scenarios, our simulation study shows that the adjusted model (with-validation data model) is always better than the unadjusted model (without validation data model). However, we showed that exception is possible in the fixed budget scenario where collection of the validation data requires a much higher cost. We also showed that both Bayesian and frequentist hypothesis testing procedures reach the same conclusions for the scenarios under consideration. The Bayesian approach is, however, computationally more stable in rare exposure contexts. A real case–control study was used to show the application of the hypothesis testing procedures under consideration.  相似文献   

5.
Chen J  Rodriguez C 《Biometrics》2007,63(4):1099-1107
Genetic epidemiologists routinely assess disease susceptibility in relation to haplotypes, that is, combinations of alleles on a single chromosome. We study statistical methods for inferring haplotype-related disease risk using single nucleotide polymorphism (SNP) genotype data from matched case-control studies, where controls are individually matched to cases on some selected factors. Assuming a logistic regression model for haplotype-disease association, we propose two conditional likelihood approaches that address the issue that haplotypes cannot be inferred with certainty from SNP genotype data (phase ambiguity). One approach is based on the likelihood of disease status conditioned on the total number of cases, genotypes, and other covariates within each matching stratum, and the other is based on the joint likelihood of disease status and genotypes conditioned only on the total number of cases and other covariates. The joint-likelihood approach is generally more efficient, particularly for assessing haplotype-environment interactions. Simulation studies demonstrated that the first approach was more robust to model assumptions on the diplotype distribution conditioned on environmental risk variables and matching factors in the control population. We applied the two methods to analyze a matched case-control study of prostate cancer.  相似文献   

6.
A two-component model for counts of infectious diseases   总被引:1,自引:0,他引:1  
We propose a stochastic model for the analysis of time series of disease counts as collected in typical surveillance systems on notifiable infectious diseases. The model is based on a Poisson or negative binomial observation model with two components: a parameter-driven component relates the disease incidence to latent parameters describing endemic seasonal patterns, which are typical for infectious disease surveillance data. An observation-driven or epidemic component is modeled with an autoregression on the number of cases at the previous time points. The autoregressive parameter is allowed to change over time according to a Bayesian changepoint model with unknown number of changepoints. Parameter estimates are obtained through the Bayesian model averaging using Markov chain Monte Carlo techniques. We illustrate our approach through analysis of simulated data and real notification data obtained from the German infectious disease surveillance system, administered by the Robert Koch Institute in Berlin. Software to fit the proposed model can be obtained from http://www.statistik.lmu.de/ approximately mhofmann/twins.  相似文献   

7.

Background

Translating a known metabolic network into a dynamic model requires reasonable guesses of all enzyme parameters. In Bayesian parameter estimation, model parameters are described by a posterior probability distribution, which scores the potential parameter sets, showing how well each of them agrees with the data and with the prior assumptions made.

Results

We compute posterior distributions of kinetic parameters within a Bayesian framework, based on integration of kinetic, thermodynamic, metabolic, and proteomic data. The structure of the metabolic system (i.e., stoichiometries and enzyme regulation) needs to be known, and the reactions are modelled by convenience kinetics with thermodynamically independent parameters. The parameter posterior is computed in two separate steps: a first posterior summarises the available data on enzyme kinetic parameters; an improved second posterior is obtained by integrating metabolic fluxes, concentrations, and enzyme concentrations for one or more steady states. The data can be heterogenous, incomplete, and uncertain, and the posterior is approximated by a multivariate log-normal distribution. We apply the method to a model of the threonine synthesis pathway: the integration of metabolic data has little effect on the marginal posterior distributions of individual model parameters. Nevertheless, it leads to strong correlations between the parameters in the joint posterior distribution, which greatly improve the model predictions by the following Monte-Carlo simulations.

Conclusion

We present a standardised method to translate metabolic networks into dynamic models. To determine the model parameters, evidence from various experimental data is combined and weighted using Bayesian parameter estimation. The resulting posterior parameter distribution describes a statistical ensemble of parameter sets; the parameter variances and correlations can account for missing knowledge, measurement uncertainties, or biological variability. The posterior distribution can be used to sample model instances and to obtain probabilistic statements about the model's dynamic behaviour.  相似文献   

8.
Basket trials simultaneously evaluate the effect of one or more drugs on a defined biomarker, genetic alteration, or molecular target in a variety of disease subtypes, often called strata. A conventional approach for analyzing such trials is an independent analysis of each of the strata. This analysis is inefficient as it lacks the power to detect the effect of drugs in each stratum. To address these issues, various designs for basket trials have been proposed, centering on designs using Bayesian hierarchical models. In this article, we propose a novel Bayesian basket trial design that incorporates predictive sample size determination, early termination for inefficacy and efficacy, and the borrowing of information across strata. The borrowing of information is based on the similarity between the posterior distributions of the response probability. In general, Bayesian hierarchical models have many distributional assumptions along with multiple parameters. By contrast, our method has prior distributions for response probability and two parameters for similarity of distributions. The proposed design is easier to implement and less computationally demanding than other Bayesian basket designs. Through a simulation with various scenarios, our proposed design is compared with other designs including one that does not borrow information and one that uses a Bayesian hierarchical model.  相似文献   

9.
Summary : We propose a semiparametric Bayesian method for handling measurement error in nutritional epidemiological data. Our goal is to estimate nonparametrically the form of association between a disease and exposure variable while the true values of the exposure are never observed. Motivated by nutritional epidemiological data, we consider the setting where a surrogate covariate is recorded in the primary data, and a calibration data set contains information on the surrogate variable and repeated measurements of an unbiased instrumental variable of the true exposure. We develop a flexible Bayesian method where not only is the relationship between the disease and exposure variable treated semiparametrically, but also the relationship between the surrogate and the true exposure is modeled semiparametrically. The two nonparametric functions are modeled simultaneously via B‐splines. In addition, we model the distribution of the exposure variable as a Dirichlet process mixture of normal distributions, thus making its modeling essentially nonparametric and placing this work into the context of functional measurement error modeling. We apply our method to the NIH‐AARP Diet and Health Study and examine its performance in a simulation study.  相似文献   

10.
T R Fears  C C Brown 《Biometrics》1986,42(4):955-960
There are a number of possible designs for case-control studies. The simplest uses two separate simple random samples, but an actual study may use more complex sampling procedures. Typically, stratification is used to control for the effects of one or more risk factors in which we are interested. It has been shown (Anderson, 1972, Biometrika 59, 19-35; Prentice and Pyke, 1979, Biometrika 66, 403-411) that the unconditional logistic regression estimators apply under stratified sampling, so long as the logistic model includes a term for each stratum. We consider the case-control problem with stratified samples and assume a logistic model that does not include terms for strata, i.e., for fixed covariates the (prospective) probability of disease does not depend on stratum. We assume knowledge of the proportion sampled in each stratum as well as the total number in the stratum. We use this knowledge to obtain the maximum likelihood estimators for all parameters in the logistic model including those for variables completely associated with strata. The approach may also be applied to obtain estimators under probability sampling.  相似文献   

11.
We consider Bayesian methodology for comparing two or more unlabeled point sets. Application of the technique to a set of steroid molecules illustrates its potential utility involving the comparison of molecules in chemoinformatics and bioinformatics. We initially match a pair of molecules, where one molecule is regarded as random and the other fixed. A type of mixture model is proposed for the point set coordinates, and the parameters of the distribution are a labeling matrix (indicating which pairs of points match) and a concentration parameter. An important property of the likelihood is that it is invariant under rotations and translations of the data. Bayesian inference for the parameters is carried out using Markov chain Monte Carlo simulation, and it is demonstrated that the procedure works well on the steroid data. The posterior distribution is difficult to simulate from, due to multiple local modes, and we also use additional data (partial charges on atoms) to help with this task. An approximation is considered for speeding up the simulation algorithm, and the approximating fast algorithm leads to essentially identical inference to that under the exact method for our data. Extensions to multiple molecule alignment are also introduced, and an algorithm is described which also works well on the steroid data set. After all the steroid molecules have been matched, exploratory data analysis is carried out to examine which molecules are similar. Also, further Bayesian inference for the multiple alignment problem is considered.  相似文献   

12.
Bayesian model–based clustering provides a powerful and flexible tool that can be incorporated into regression models to better understand the grouping of observations. Using data from the Seychelles Child Development Study, we explore the effect of prenatal methylmercury exposure on 20 neurodevelopmental outcomes measured in 9-year-old children. Rather than cluster individual subjects, we cluster the outcomes within a multiple outcomes model. By using information in the data to nest the outcomes into groups called domains, the model more accurately reflects the shared characteristics of neurodevelopmental domains and improves estimation of the overall and outcome-specific exposure effects by shrinking effects within and between domains selected by the data. The Bayesian paradigm allows for sampling from the posterior distribution of the grouping parameters; thus, inference can be made about group membership and their defining characteristics. We avoid the often difficult and highly subjective requirement of a priori identification of the total number of groups by incorporating a Dirichlet process prior to form a fully Bayesian multiple outcomes model.  相似文献   

13.
We investigate the transmission dynamics of a certain type of foot-and-mouth disease (FMD) virus under experimental conditions. Previous analyses of experimental data from FMD outbreaks in non-homogeneously mixing populations of sheep have suggested a decline in viraemic level through serial passage of the virus, but these do not take into account possible variation in the length of the chain of viral transmission for each animal, which is implicit in the non-observed transmission process. We consider a susceptible-exposed-infectious-removed non-Markovian compartmental model for partially observed epidemic processes, and we employ powerful methodology (Markov chain Monte Carlo) for statistical inference, to address epidemiological issues under a Bayesian framework that accounts for all available information and associated uncertainty in a coherent approach. The analysis allows us to investigate the posterior distribution of the hidden transmission history of the epidemic, and thus to determine the effect of the length of the infection chain on the recorded viraemic levels, based on the posterior distribution of a p-value. Parameter estimates of the epidemiological characteristics of the disease are also obtained. The results reveal a possible decline in viraemia in one of the two experimental outbreaks. Our model also suggests that individual infectivity is related to the level of viraemia.  相似文献   

14.
Bayes' theorem and its applications in animal behaviour   总被引:2,自引:0,他引:2  
Bayesian decision theory can be used to model animal behaviour. In this paper we give an overview of the theoretical concepts in such models. We also review the biological contexts in which Bayesian models have been applied, and outline some directions where future studies would be useful. Bayesian decision theory, when applied to animal behaviour, is based on the assumption that the individual has some sort of "prior opinion" of the possible states of the world. This may, for example, be a previously experienced distribution of qualities of food patches, or qualities of potential mates. The animal is then assumed to be able use sampling information to arrive at a "posterior opinion", concerning e.g. the quality of a given food patch, or the average qualities of mates in a year. A correctly formulated Bayesian model predicts how animals may combine previous experience with sampling information to make optimal decisions. We argue that the assumption that animals may have "prior opinions" is reasonable. Their priors may come from one or both of two sources: either from their own individual experience, gained while sampling the environment, or from an adaptation to the environment experienced by previous generations. This means that we should often expect to see "Bayesian-like" decision-making in nature.  相似文献   

15.
We propose an online binary classification procedure for cases when there is uncertainty about the model to use and parameters within a model change over time. We account for model uncertainty through dynamic model averaging, a dynamic extension of Bayesian model averaging in which posterior model probabilities may also change with time. We apply a state-space model to the parameters of each model and we allow the data-generating model to change over time according to a Markov chain. Calibrating a "forgetting" factor accommodates different levels of change in the data-generating mechanism. We propose an algorithm that adjusts the level of forgetting in an online fashion using the posterior predictive distribution, and so accommodates various levels of change at different times. We apply our method to data from children with appendicitis who receive either a traditional (open) appendectomy or a laparoscopic procedure. Factors associated with which children receive a particular type of procedure changed substantially over the 7 years of data collection, a feature that is not captured using standard regression modeling. Because our procedure can be implemented completely online, future data collection for similar studies would require storing sensitive patient information only temporarily, reducing the risk of a breach of confidentiality.  相似文献   

16.
Random effects selection in linear mixed models   总被引:2,自引:0,他引:2  
Chen Z  Dunson DB 《Biometrics》2003,59(4):762-769
We address the important practical problem of how to select the random effects component in a linear mixed model. A hierarchical Bayesian model is used to identify any random effect with zero variance. The proposed approach reparameterizes the mixed model so that functions of the covariance parameters of the random effects distribution are incorporated as regression coefficients on standard normal latent variables. We allow random effects to effectively drop out of the model by choosing mixture priors with point mass at zero for the random effects variances. Due to the reparameterization, the model enjoys a conditionally linear structure that facilitates the use of normal conjugate priors. We demonstrate that posterior computation can proceed via a simple and efficient Markov chain Monte Carlo algorithm. The methods are illustrated using simulated data and real data from a study relating prenatal exposure to polychlorinated biphenyls and psychomotor development of children.  相似文献   

17.
Calibration is a critical step in every molecular clock analysis but it has been the least considered. Bayesian approaches to divergence time estimation make it possible to incorporate the uncertainty in the degree to which fossil evidence approximates the true time of divergence. We explored the impact of different approaches in expressing this relationship, using arthropod phylogeny as an example for which we established novel calibrations. We demonstrate that the parameters distinguishing calibration densities have a major impact upon the prior and posterior of the divergence times, and it is critically important that users evaluate the joint prior distribution of divergence times used by their dating programmes. We illustrate a procedure for deriving calibration densities in Bayesian divergence dating through the use of soft maximum constraints.  相似文献   

18.

Background

Classification and regression tree (CART) models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia.

Methodology/Principal Findings

We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR) model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects.

Conclusions/Significance

A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control.  相似文献   

19.
The disease burden attributable to opportunistic pathogens depends on their prevalence in asymptomatic colonisation and the rate at which they progress to cause symptomatic disease. Increases in infections caused by commensals can result from the emergence of “hyperinvasive” strains. Such pathogens can be identified through quantifying progression rates using matched samples of typed microbes from disease cases and healthy carriers. This study describes Bayesian models for analysing such datasets, implemented in an RStan package (https://github.com/nickjcroucher/progressionEstimation). The models converged on stable fits that accurately reproduced observations from meta-analyses of Streptococcus pneumoniae datasets. The estimates of invasiveness, the progression rate from carriage to invasive disease, in cases per carrier per year correlated strongly with the dimensionless values from meta-analysis of odds ratios when sample sizes were large. At smaller sample sizes, the Bayesian models produced more informative estimates. This identified historically rare but high-risk S. pneumoniae serotypes that could be problematic following vaccine-associated disruption of the bacterial population. The package allows for hypothesis testing through model comparisons with Bayes factors. Application to datasets in which strain and serotype information were available for S. pneumoniae found significant evidence for within-strain and within-serotype variation in invasiveness. The heterogeneous geographical distribution of these genotypes is therefore likely to contribute to differences in the impact of vaccination in between locations. Hence genomic surveillance of opportunistic pathogens is crucial for quantifying the effectiveness of public health interventions, and enabling ongoing meta-analyses that can identify new, highly invasive variants.  相似文献   

20.
A pharmacokinetic program that allows individualization of drug dosage regimens through the Bayesian method is described. The program, which is designed for the Hewlett-Packard HP-41 CV calculator, is based upon the one-compartment open model with either instantaneous or zero-order absorption. Individualized estimation of the patient's kinetic parameters (clearance and volume of distribution) is performed by analyzing the plasma levels measured in the patient as well as considering the population data of the drug. After estimating the individual kinetic parameters by the Bayesian method, the program predicts the dosage regimen that will elicit the desired peak and trough plasma levels at steady state. For comparison purposes, the least-squares estimates for clearance and volume of distribution are calculated, and dosage prediction can also be made on the basis of the least-squares estimates. The least-squares estimates can be used to calculate population pharmacokinetic parameters according to the Standard Two-Stage method. Several examples of clinical use of the program are presented. The examples refer to patients with classic hemophilia who were treated with Factor VIII concentrates. In these patients, the Bayesian kinetic parameters of Factor VIII have been estimated through the calculator program. The Bayesian parameter estimates generated by the HP-41 have been compared with those determined by a Bayesian program (ADVISE) designed for microcomputers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号