共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains 下载免费PDF全文
Darren A. Lytle Eugene W. Rice Clifford H. Johnson Kim R. Fox 《Applied microbiology》1999,65(7):3222-3225
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. 相似文献
2.
Marina Steele Kim Ziebell Yongxiang Zhang Andrew Benson Roger Johnson Chad Laing Eduardo Taboada Victor Gannon 《Applied and environmental microbiology》2009,75(10):3271-3280
Populations of the food- and waterborne pathogen Escherichia coli O157:H7 are comprised of two major lineages. Recent studies have shown that specific genotypes within these lineages differ substantially in the frequencies with which they are associated with human clinical disease. While the nucleotide sequences of the genomes of lineage I strains E. coli O157 Sakai and EDL9333 have been determined, much less is known about the genomes of lineage II strains. In this study, suppression subtractive hybridization (SSH) was used to identify genomic features that define lineage II populations. Three SSH experiments were performed, yielding 1,085 genomic fragments consisting of 811 contigs. Bacteriophage sequences were identified in 11.3% of the contigs, 9% showed insertions and 2.3% deletions with respect to E. coli O157:H7 Sakai, and 23.2% did not have significant identity to annotated sequences in GenBank. In order to test for the presence of these novel loci in lineage I and II strains, 27 PCR primer sets were designed based on sequences from these contigs. All but two of these PCR targets were found in the majority (51.9% to 100%) of 27 lineage II strains but in no more than one (<6%) of the 17 lineage I strains. Several of these linage II-related fragments contain insertions/deletions that may play an important role in virulence. These lineage II-related loci were also shown to be useful markers for genotyping of E. coli O157:H7 strains isolated from human and animal sources.Enterohemorrhagic Escherichia coli is associated with diarrhea, hemorrhagic colitis, and hemolytic-uremic syndrome in humans (31). E. coli serotype O157:H7 predominates in epidemics and sporadic cases of enterohemorrhagic E. coli-related infections in the United States, Canada, Japan, and the United Kingdom (12). Cattle are considered the most important reservoir of E. coli O157:H7 (10, 24, 37, 41), and foods contaminated with bovine feces are thought to be the most common source of human infection with this pathogen (27, 33). The two most important virulence factors of the organism are the production of one or more Shiga toxins (Stx) (6, 20, 32) and the ability to attach to and efface microvilli of host intestinal cells (AE). Stx genes are encoded by temperate bacteriophage inserted in the bacterial chromosome, and genes responsible for the AE phenotype are located on the locus of enterocyte effacement (LEE) as well as other pathogenicity islands (4, 17). All E. coli O157:H7 strains also possess a large plasmid which is thought to play a role in virulence (10, 40, 42).Octamer-based genome scanning (OBGS) was first used to show that E. coli O157 strains from the United States and Australia could be subdivided into two genetically distinct lineages (21, 22, 46). While both E. coli O157:H7 lineages are associated with human disease and are isolated from cattle, there is a bias in the host distribution between the two lineages, with a significantly higher proportion of lineage I strains isolated from humans than lineage II strains. Several recent studies have shown that there are inherent differences in gene content and expression between populations of lineage I and lineage II E. coli O157:H7 strains. Lejeune et al. (26) reported that the antiterminator Q gene of the stx2-converting bacteriophage 933W was found in all nine OBGS lineage I strains examined but in only two of seven lineage II strains, suggesting that there may be lineage-specific differences in toxin production. Dowd and Ishizaki (9) used DNA microarray analysis to examine expression of 610 E. coli O157:H7 genes and showed that lineage I and lineage II E. coli O157:H7 strains have evolved distinct patterns of gene expression which may alter their virulence and their ability to survive in different microenvironments and colonize the intestines of different hosts (9, 28, 38).The observations of lineage host bias have been supported and extended by studies using a six-locus-based multiplex PCR termed the lineage-specific polymorphism assay (LSPA-6) (46). However, Ziebell et al. (48) have recently shown that not all LSPA-6 types within lineage II are host biased; e.g., LSPA-6 type 211111 isolation rates from humans and cattle were significantly different from those of other lineage II LSPA-6 types. Therefore, a clearer definition is required of not only the differences between lineages but also the differences among clonal groups within lineages.The genome sequences of two E. coli O157:H7 strains, Sakai and EDL933 (14, 36), have been determined; however, both of these strains are of lineage I, and there are presently no completed and fully annotated genome sequences available for lineage II strains. In our laboratory, comparative studies utilizing suppression subtractive hybridization (SSH) and comparative genomic hybridization revealed numerous potential virulence factors that are conserved in lineage I strains and that are rare or absent in lineage II strains (42, 47). In this study, we have used SSH to identify genomic regions present in E. coli O157:H7 lineage II strains that are absent from lineage I strains. We wished to examine the distribution of these novel gene segments in E. coli O157:H7 strains and gain insight into their origins and functions. We also attempted to identify molecular markers specific to lineage II strains as well as other markers that would be useful in the genetic subtyping or molecular fingerprinting of E. coli O157:H7 strains in population and epidemiological studies (25). This information may be helpful in the identification of genotypes of the organism associated with specific phenotypes of both lesser and greater virulence (29). 相似文献
3.
Terrance M. Arthur Rafiq Ahmed Margo Chase-Topping Norasak Kalchayanand John W. Schmidt James L. Bono 《Applied and environmental microbiology》2013,79(14):4294-4303
Previous reports have indicated that a small proportion of cattle shedding high levels of Escherichia coli O157:H7 is the main source for transmission of this organism between animals. Cattle achieving a fecal shedding status of 104 CFU of E. coli O157:H7/gram or greater are now referred to as supershedders. The aim of this study was to investigate the contribution of E. coli O157:H7 strain type to supershedding and to determine if supershedding was restricted to a specific set of E. coli O157:H7 strains. Fecal swabs (n = 5,086) were collected from cattle at feedlots or during harvest. Supershedders constituted 2.0% of the bovine population tested. Supershedder isolates were characterized by pulsed-field gel electrophoresis (PFGE), phage typing, lineage-specific polymorphism assay (LSPA), Stx-associated bacteriophage insertion (SBI) site determination, and variant analysis of Shiga toxin, tir, and antiterminator Q genes. Isolates representing 52 unique PFGE patterns, 19 phage types, and 12 SBI clusters were obtained from supershedding cattle, indicating that there is no clustering to E. coli O157:H7 genotypes responsible for supershedding. While being isolated directly from cattle, this strain set tended to have higher frequencies of traits associated with human clinical isolates than previously collected bovine isolates with respect to lineage and tir allele, but not for SBI cluster and Q type. We conclude that no exclusive genotype was identified that was common to all supershedder isolates. 相似文献
4.
Wang R Kalchayanand N Bono JL Schmidt JW Bosilevac JM 《Applied and environmental microbiology》2012,78(17):6341-6344
Escherichia coli O26:H11 strains were able to outgrow O157:H7 companion strains in planktonic and biofilm phases and also to effectively compete with precolonized O157:H7 cells to establish themselves in mixed biofilms. E. coli O157:H7 strains were unable to displace preformed O26:H11 biofilms. Therefore, E. coli O26:H11 remains a potential risk in food safety. 相似文献
5.
Measurements of Fitness and Competition in Commensal Escherichia coli and E. coli O157:H7 Strains 下载免费PDF全文
Although the main reservoirs for pathogenic Escherichia coli O157:H7 are cattle and the cattle environment, factors that affect its tenure in the bovine host and its survival outside humans and cattle have not been well studied. It is also not understood what physiological properties, if any, distinguish these pathogens from commensal counterparts that live as normal members of the human and bovine gastrointestinal tracts. To address these questions, individual and competitive fitness experiments, indirect antagonism assays, and antibiotic resistance and carbon utilization analyses were conducted using a strain set consisting of 122 commensal and pathogenic strains. The individual fitness experiments, under four different environments (rich medium, aerobic and anaerobic; rumen medium, anaerobic; and a minimal medium, aerobic) revealed no differences in growth rates between commensal E. coli and E. coli O157:H7 strains. Indirect antagonism assays revealed that E. coli O157:H7 strains more frequently produced inhibitory substances than commensal strains did, under the conditions tested, although both groups displayed moderate sensitivity. Only minor differences were noted in the antibiotic resistance patterns of the two groups. In contrast, several differences between commensal and O157:H7 groups were observed based on their carbon utilization profiles. Of 95 carbon sources tested, 27 were oxidized by commensal E. coli strains but not by the E. coli O157:H7 strains. Despite the observed physiological and biochemical differences between these two groups of E. coli strains, however, the O157:H7 strains did not appear to possess traits that would confer advantages in the bovine or extraintestinal environment. 相似文献
6.
Mutations in the csgD Promoter Associated with Variations in Curli Expression in Certain Strains of Escherichia coli O157:H7 下载免费PDF全文
Single-base-pair csgD promoter mutations in human outbreak Escherichia coli O157:H7 strains ATCC 43894 and ATCC 43895 coincided with differential Congo red dye binding from curli fiber expression. Red phenotype csgD::lacZ promoter fusions had fourfold-greater expression than white promoter fusions. Cloning the red variant csgDEFG operon into white variants induced the red phenotype. Substrate utilization differed between red and white variants. 相似文献
7.
Carolyn J. Hovde Paula R. Austin Karen A. Cloud Christopher J. Williams Carl W. Hunt 《Applied microbiology》1999,65(7):3233-3235
The duration of shedding of Escherichia coli O157 isolates by hay-fed and grain-fed steers experimentally inoculated with E. coli O157:H7 was compared, as well as the acid resistance of the bacteria. The hay-fed animals shed E. coli O157 longer than the grain-fed animals, and irrespective of diet, these bacteria were equally acid resistant. Feeding cattle hay may increase human infections with E. coli O157:H7. 相似文献
8.
9.
Zhongrui Ma Huajie Zhang Wenjing Shang Faliang Zhu Weiqing Han Xueer Zhao Donglei Han Peng George Wang Min Chen 《PloS one》2014,9(8)
Glycoconjugate is one of the most efficacious and safest vaccines against bacterial pathogens. Previous studies of glycoconjugates against pathogen E. coli O157:H7 focused more on the humoral responses they elicited. However, little was known about their cellular responses. In this study, we exploited a novel approach based on bacterial protein N-linked glycosylation system to produce glycoconjugate containing Escherichia coli O157:H7 O-antigen linked with maltose-binding protein and examined its humoral and cellular responses in BALB/c mice. The transfer of E. coli O157:H7 O-antigen to MBP was confirmed by western blot and MALDI-TOF MS. Mice injected with glycoconjugate O-Ag-MBP elicited serum bactericidal antibodies including anti-E. coli O157:H7 O-antigen IgG and IgM. Interestingly, O-Ag-MBP also stimulated the secretion of anti-E. coli O157:H7 O-antigen IgA in intestine. In addition, O-Ag-MBP stimulated cellular responses by recruiting Th1-biased CD4+ T cells, CD8+ T cells. Meanwhile, O-Ag-MBP induced the upregulation of Th1-related IFN-γ and downregulation of Th2-related IL-4, and the upregulation of IFN-γ was stimulated by MBP in a dose-dependent manner. MBP showed TLR4 agonist-like properties to activate Th1 cells as carrier protein of O-Ag-MBP. Thus, glycoconjugate vaccine E. coli O157:H7-specific O-Ag-MBP produced by bacterial protein N-linked glycosylation system was able to elicit both humoral and Th1-biased cellular responses. 相似文献
10.
Powell Mark R. Ebel Eric Schlosser Wayne Walderhaug Mark Kause Janell 《Quantitative Microbiology》2000,2(2):141-163
Escherichia coli O157:H7 is an emerging food and waterborne pathogen in the U.S. and internationally. The objective of this work was to develop a dose-response model for illness by this organism that bounds the uncertainty in the dose-response relationship. No human clinical trial data are available for E. coli O157:H7, but such data are available for two surrogate pathogens: enteropathogenic E. coli (EPEC) and Shigella dysenteriae. E. coli O157:H7 outbreak data provide an initial estimate of the most likely value of the dose-response relationship within the bounds of an envelope defined by beta-Poisson dose-response models fit to the EPEC and S. dysenteriae data. The most likely value of the median effective dose for E. coli O157:H7 is estimated to be approximately 190[emsp4 ]000 colony forming units (cfu). At a dose level of 100[emsp4 ]cfu, the median response predicted by the model is six percent. 相似文献
11.
Outbreaks of diarrhoea and haemolytic uraemic syndrome have been associated with the consumption of apple cider and apple juice. The organism implicated in these outbreaks has been Escherichia coli O157:H7, indicating the resistance of the serotype to acidic pH. On comparing the growth of this serotype with a control strain of E. coli, it was found that strain O157:H7 grew well in trypticase soy broth at pH levels ranging from 2.0 to 9.0, while control strains failed to grow at pH levels below 4.0 and above 9.0. The growth of both strains were inhibited by adding 0.05% of either benzoic acid or sorbic acid. Similarly, O157:H7 grew well in both natural (unpasteurized) as well as in pasteurized apple juice and the growth was inhibited by adding 0.1% of either benzoic acid or sorbic acid. Control strains of E. coli failed to grow in either types of apple juice. The possible sources of contamination of natural apple juice with O157:H7 serotype are discussed. 相似文献
12.
Heat Adaptation Alters Escherichia coli O157:H7 Membrane Lipid Composition and Verotoxin Production 下载免费PDF全文
The influence of heat adaptation (growth at 42 and 45°C) on changes in membrane lipid composition and verotoxin concentration of Escherichia coli O157:H7 (ATCC 43895), an rpoS mutant of ATCC 43895 (FRIK 816-3), a verotoxin mutant E. coli O157:H7 (B6-914), and nonpathogenic E. coli (ATCC 25922) was investigated. D values (57°C) of heat-adapted cells were up to 3.9 min longer than those of control cells for all four strains. Heat adaptation increased the amounts of palmitic acid (16:0) and cis-vaccenic acid (18:1ω7c) in membrane lipids of ATCC 43895 and the rpoS mutant, whereas there was a reduction and no change in the amount of cis-vaccenic acid in nonpathogenic and verotoxin mutant E. coli, respectively. The ratio of palmitic to cis-vaccenic acids decreased in ATCC 43895 and in the rpoS mutant, whereas the ratio increased in nonpathogenic E. coli and was not different in the verotoxin mutant with elevated growth temperature. Total verotoxin concentration decreased due to a reduction in intracellular verotoxin amount in heat-adapted ATCC 43895 and rpoS mutant strains. However, extracellular verotoxin concentration increased in heat-adapted cells. The rpoS gene did not influence membrane lipid composition changes although it did affect heat resistance. Results suggest that increased membrane fluidity may have caused increased verotoxin secretion. 相似文献
13.
大肠杆菌O157:H7核酸探针检测方法的建立 总被引:1,自引:0,他引:1
目的:应用核酸探针方法快速检测大肠杆菌O157:H7。方法:通过使用吖啶酯标记的特异DNA探针方法检测大肠杆菌O157:H7,对此种方法的特异性、敏感性、准确性进行研究,比较该方法与传统国标法的检测结果。结果:核酸探针方法检测大肠杆菌O157:H7特异性以及敏感性强,检出大肠杆菌O157:H7菌液浓度最低限约为106cfu/ml,检测大肠杆菌O157:H7的结果与国标法相一致;对O157:H7鉴定时间仅需30min,简便快捷。结论:核酸探针方法可用于大肠杆菌O157:H7的快速检测。 相似文献
14.
Direct PCR detection of Escherichia coli O157:H7 总被引:2,自引:0,他引:2
AIMS: This paper reports a simple, rapid approach for the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC). METHODS AND RESULTS: Direct PCR (DPCR) obviates the need for the recovery of cells from the sample or DNA extraction prior to PCR. Primers specific for Stx-encoding genes stx1 and stx2 were used in DPCR for the detection of E. coli O157:H7 added to environmental water samples and milk. CONCLUSIONS: PCR reactions containing one cell yielded a DPCR product. SIGNIFICANCE AND IMPACT OF THE STUDY: This should provide an improved method to assess contamination of environmental and other samples by STEC and other pathogens. 相似文献
15.
Stuart B. Price Chorng-Ming Cheng Charles W. Kaspar James C. Wright Fred J. DeGraves Thomas A. Penfound Marie-Pierre Castanie-Cornet John W. Foster 《Applied microbiology》2000,66(2):632-637
Acid resistance (AR) is important to survival of Escherichia coli O157:H7 in acidic foods and may play a role during passage through the bovine host. In this study, we examined the role in AR of the rpoS-encoded global stress response regulator ςS and its effect on shedding of E. coli O157:H7 in mice and calves. When assayed for each of the three AR systems identified in E. coli, an rpoS mutant (rpoS::pRR10) of E. coli O157:H7 lacked the glucose-repressed system and possessed reduced levels of both the arginine- and glutamate-dependent AR systems. After administration of the rpoS mutant and the wild-type strain (ATCC 43895) to ICR mice at doses ranging from 101 to 104 CFU, we found the wild-type strain in feces of mice given lower doses (102 versus 103 CFU) and at a greater frequency (80% versus 13%) than the mutant strain. The reduction in passage of the rpoS mutant was due to decreased AR, as administration of the mutant in 0.05 M phosphate buffer facilitated passage and increased the frequency of recovery in feces from 27 to 67% at a dose of 104 CFU. Enumeration of E. coli O157:H7 in feces from calves inoculated with an equal mixture of the wild-type strain and the rpoS mutant demonstrated shedding of the mutant to be 10- to 100-fold lower than wild-type numbers. This difference in shedding between the wild-type strain and the rpoS mutant was statistically significant (P ≤ 0.05). Thus, ςS appears to play a role in E. coli O157:H7 passage in mice and shedding from calves, possibly by inducing expression of the glucose-repressed RpoS-dependent AR determinant and thus increasing resistance to gastrointestinal stress. These findings may provide clues for future efforts aimed at reducing or eliminating this pathogen from cattle herds. 相似文献
16.
Acid adaptation of Escherichia coli O157:H7 increases survival in acidic foods. 总被引:7,自引:5,他引:7 下载免费PDF全文
Escherichia coli O157:H7 was adapted to acid by culturing for one to two doublings at pH 5.0. Acid-adapted cells had an increased resistance to lactic acid, survived better than nonadapted cells during a sausage fermentation, and showed enhanced survival in shredded dry salami (pH 5.0) and apple cider (pH 3.4). Acid adaptation is important for the survival of E. coli O157:H7 in acidic foods and should be considered a prerequisite for inocula used in food challenge studies. 相似文献
17.
By comparing two strains of Escherichia coli (K12 and O157:H7) with an outgroup of Salmonella and Klebsiella species and analyzing the sets of genes which are present or absent in either of the three groups, we study the gene history of K12, in particular, since the respective divergences of these bacteria. Furthermore, by using a compositional method based on context bias, we evaluate not only recently imported genes but also deleted genes. In addition, we examine recent gene duplications in the two E. coli strains. It is found that turnover of DNA is high in E. coli and, more importantly, that turnover is highest for genes of low GC content. Although levels of import are high, most of the imported genes seem to be "junk" or have poorly understood functions. Nevertheless, selected genes do persist, and may even define some E. coli strains as pathogenic. Our results support the conclusion that some of the pathogenic islands in O157:H7 are likely to have been imported in recent time. 相似文献
18.
Davis MA Cloud-Hansen KA Carpenter J Hovde CJ 《Applied and environmental microbiology》2005,71(11):6816-6822
Outbreaks of Escherichia coli O157:H7 disease associated with animal exhibits have been reported with increasing frequency. Transmission can occur through contact with contaminated haircoats, bedding, farm structures, or water. We investigated the distribution and survival of E. coli O157:H7 in the immediate environments of individually housed, experimentally inoculated cattle by systematically culturing feed, bedding, water, haircoat, and feed bunk walls for E. coli O157:H7 for 3 months. Cedar chip bedding was the most frequently culture-positive environmental sample tested (27/96 or 28.15%). Among these, 12 (44.0%) of positive bedding samples were collected when the penned animal was fecal culture negative. Survival of E. coli O157:H7 in experimentally inoculated cedar chip bedding and in grass hay feed was determined at different temperatures. Survival was longest in feed at room temperature (60 days), but bacterial counts decreased over time. The possibility that urine plays a role in the environmental survival of E. coli O157:H7 was investigated. Cedar chip bedding moistened with sterile water or bovine urine was inoculated with E. coli O157:H7. Bedding moistened with urine supported growth of E. coli O157:H7, whereas inoculated bedding moistened with only water yielded decreasing numbers of bacteria over time. The findings that environmental samples were frequently positive for E. coli O157:H7 at times when animals were culture negative and that urine provided a substrate for E. coli O157:H7 growth have implications for understanding the on-farm ecology of this pathogen and for the safety of ruminant animal exhibits, particularly petting zoos and farms where children may enter animal pens. 相似文献
19.
The synergistic antimicrobial effects of phytic acid (PA), a natural extract from rice bran, plus sodium chloride against Escherichia coli O157:H7 were examined. Exposure to NaCl alone at concentrations up to 36% (wt/wt) for 5 min did not reduce bacterial populations. The bactericidal effects of PA alone were much greater than those of other organic acids (acetic, citric, lactic, and malic acids) under the same experimental conditions (P < 0.05). Combining PA and NaCl under conditions that yielded negligible effects when each was used alone led to marked synergistic effects. For example, whereas 0.4% PA or 3 or 4% NaCl alone had little or no effect on cell viability, combining the two completely inactivated both nonadapted and acid-adapted cells, reducing their numbers to unrecoverable levels (>7-log CFU/ml reduction). Flow cytometry confirmed that PA disrupted the cell membrane to a greater extent than did other organic acids, although the cells remained viable. The combination of PA and NaCl induced complete disintegration of the cell membrane. By comparison, none of the other organic acids acted synergistically with NaCl, and neither did NaCl-HCl solutions at the same pH values as the test solutions of PA plus NaCl. These results suggest that PA has great potential as an effective bacterial membrane-permeabilizing agent, and we show that the combination is a promising alternative to conventional chemical disinfectants. These findings provide new insight into the utility of natural compounds as novel antimicrobial agents and increase our understanding of the mechanisms underlying the antibacterial activity of PA. 相似文献
20.
Zhemin Zhou Xiaomin Li Bin Liu Lothar Beutin Jianguo Xu Yan Ren Lu Feng Ruiting Lan Peter R. Reeves Lei Wang 《PloS one》2010,5(1)
There are 29 E. coli genome sequences available, mostly related to studies of species diversity or mode of pathogenicity, including two genomes of the well-known O157:H7 clone. However, there have been no genome studies of closely related clones aimed at exposing the details of evolutionary change. Here we sequenced the genome of an O55:H7 strain, closely related to the major pathogenic O157:H7 clone, with published genome sequences, and undertook comparative genomic and proteomic analysis. We were able to allocate most differences between the genomes to individual mutations, recombination events, or lateral gene transfer events, in specific lineages. Major differences include a type II secretion system present only in the O55:H7 chromosome, fewer type III secretion system effectors in O55:H7, and 19 phage genomes or phagelike elements in O55:H7 compared to 23 in O157:H7, with only three common to both. Many other changes were found in both O55:H7 and O157:H7 lineages, but in general there has been more change in the O157:H7 lineages. For example, we found 50% more synonymous mutational substitutions in O157:H7 compared to O55:H7. The two strains also diverged at the proteomic level. Mutational synonymous SNPs were used to estimate a divergence time of 400 years using a new clock rate, in contrast to 14,000 to 70,000 years using the traditional clock rates. The same approaches were applied to three closely related extraintestinal pathogenic E. coli genomes, and similar levels of mutation and recombination were found. This study revealed for the first time the full range of events involved in the evolution of the O157:H7 clone from its O55:H7 ancestor, and suggested that O157:H7 arose quite recently. Our findings also suggest that E. coli has a much lower frequency of recombination relative to mutation than was observed in a comparable study of a Vibrio cholerae lineage. 相似文献