首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
I review new evidence on origins and adaptive radiation of Malagasy lemurs, a remarkably diverse group containing 13% of living primate species. The number of recognized lemur species has increased significantly, partly due to research revealing specific subdivisions within known populations but mainly because of discovery of new populations through fieldwork. Some species feared to be extinct have also been rediscovered. Specific numbers have increased particularly in small-bodied, cryptic genera for which continued research will surely reveal even more species.Adaptative radiation of lemurs has been essentially confined to Madagascar. The high density of lemur species on that island, associated with very small geographical ranges, has major implications both for their evolutionary divergence and for conservation. Reconstructions of phylogenetic relationships among primates have been considerably enhanced by DNA sequence data. Sufficient data are now available from both nuclear and mitochondrial sequences to examine relationships among and within the major groups of living primates. Most studies have confirmed that lemurs constitute a monophyletic sister-group of the lorisiform clade and all exclude a specific relationship between cheirogaleids and lorisiforms repeatedly inferred from morphological evidence. However, some analyses indicate that the aye-aye may have branched away before the divergence between other lemurs and lorisiforms. DNA sequence analyses have also yielded a broad consensus for relationships between Eulemur, Hapalemur, Lemur and Varecia: Varecia branched away first, while Lemur is more closely related to Hapalemur than to Eulemur. As debate about phylogenetic relationships among lemurs and other primates seems to have been settled in favor of lemur monophyly (possibly excluding the aye-aye), only a single invasion of Madagascar is required; but it must still be explained how ancestral lemurs could have migrated there at an appropriate time. Separation between Madagascar and Africa was apparently complete by about 120 Ma, too far in the past for direct overland migration. A recent hypothesis suggested that uplifted land in the Mozambique Channel assisted colonization of Madagascar 26-45 Ma, seemingly agreeing with an estimated date of about 40 Ma for divergence of lemurs from other primates. However, mounting evidence suggests that divergence occurred significantly earlier. Because the earliest known fossil representatives of several modern orders of placental mammals (including primates) are dated no earlier than the early Tertiary, it is widely accepted that their divergence took place after the Cretaceous/Tertiary mass extinction. Yet the known fossil record can only yield minimum divergence times; if sampling is poor and/or biased there may be a considerable discrepancy between minimum and actual dates. There is, for example, virtually no known fossil record for lemurs in Madagascar and the earliest known representatives are subfossil lemurs, so in this case a direct reading of the fossil record would indicate that the lemurs first originated just a few thousand years ago! Examination of underestimation of times of origin because of poor sampling in the fossil record has confirmed previous suggestions that primates originated considerably earlier than generally believed. Several recent phylogenetic reconstructions based on DNA sequence data and using calibration dates derived from groups other than primates provide independent support for this inference. Overall, it now seems that primates originated at around 90 Ma rather than the 55 Ma indicated by direct reading of the known fossil record. Hence, colonization of Madagascar by lemurs would have taken place at about 80 Ma, double the date usually accepted, and should be interpreted in terms of contemporary continental relationships.  相似文献   

2.
3.
Mouse lemurs (genus Microcebus) are nocturnal primates endemic to the island of Madagascar. Until recently, they were classified as two species, one from eastern and one from western Madagascar. Previously published analyses of morphometric and mitochondrial DNA data show strong support for the recognition of more than eight species, however. Here, we test the eight-species hypothesis with DNA data derived from four independently segregating nuclear loci. We find many areas of congruence between the mitochondrial and nuclear data, but incomplete lineage sorting and low mutation rates limit the phylogenetic resolution of the nuclear data. Even so, the nuclear loci unanimously find evidence for three deeply diverged lineages within the mouse lemur radiation: one that is congruent with the mtDNA "southern clade", another that is congruent with the mtDNA "northern clade", and one monospecific branch comprised of the species Microcebus ravelobensis. The latter result in particular emphasizes the need for careful biological study of this species.  相似文献   

4.

Background  

The lemurs of Madagascar provide an excellent mammalian radiation to explore mechanisms and processes favouring species diversity and evolution. Species diversity, in particular of nocturnal species, increased considerably during the last decade. However, the factors contributing to this high diversity are not well understood. We tested predictions derived from two existing biogeographic models by exploring the genetic and morphological divergence among populations of a widely distributed lemur genus, the sportive lemur (Lepilemur ssp.) along a 560 km long transect from western to northern Madagascar.  相似文献   

5.
6.
Madagascar harbors four large adaptive radiations of endemic terrestrial mammals: lemurs, tenrecs, carnivorans, and rodents. These rank among the most spectacular examples of evolutionary diversification, but their monophyly and origins are debated. The lack of Tertiary fossils from Madagascar leaves molecular studies as most promising to solve these controversies. We provide a simultaneous reconstruction of phylogeny and age of the four radiations based on a 3.5-kb data set from three nuclear genes (ADRA2B, vWF, and AR). The analysis supports each as a monophyletic clade, sister to African taxa, and thereby identifies four events of colonization out of Africa. To infer the time windows for colonization, we take into account both the divergence from the closest non-insular sister group and the initial intra-insular radiation, which is a novel but conservative approach in studies of the colonization history of Madagascar. We estimate that lemurs colonized Madagascar between 60 million years ago (Mya) (split from lorises) and 50 Mya (lemur radiation) (70-41 Mya taking 95% credibility intervals into account), tenrecs between 42 and 25 Mya (50-20 Mya), carnivorans between 26 and 19 Mya (33-14 Mya), and rodents between 24 and 20 Mya (30-15 Mya). These datings suggest at least two asynchronous colonization events: by lemurs in the Late Cretaceous-Middle Eocene, and by carnivorans and rodents in the Early Oligocene-Early Miocene. The colonization by tenrecs may have taken place simultaneously with either of these two events, or in a third event in the Late Eocene-Oligocene. Colonization by at least lemurs, rodents, and carnivorans appears to have occurred by overseas rafting rather than via a land bridge hypothesized to have existed between 45 and 26 Mya, but the second scenario cannot be ruled out if credibility intervals are taken into account.  相似文献   

7.
The small-bodied mouse lemurs of Madagascar (Microcebus) are capable of heterothermy (i.e., torpor or hibernation). The expression of these energy-saving strategies has been physiologically demonstrated in three species: M. berthae, the pygmy mouse lemur (daily torpor), M. murinus, the gray mouse lemur (daily torpor and hibernation), and M. griseorufus, the reddish-gray mouse lemur (daily, prolonged torpor and hibernation). Additional evidence, based on radiotracking and seasonal body mass changes, indicated that mouse lemur capabilities for heterothermy extended to M. lehilahytsara, the Goodman’s mouse lemur. In this study, we confirm the use of hibernation in Goodman’s mouse lemurs at a new location, a high-plateau forest fragment in Ankafobe, central Madagascar. Our evidence is based on sleeping site monitoring of radiocollared individuals and the retrieval of three mouse lemurs from inside a tree hole, all of which displayed a lethargic state. Though our data are preliminary and scant, we show that hibernation occurs in high-plateau mouse lemurs, and suggest that a buffered environment (i.e., tree holes instead of nests) may be crucial to avoiding potentially extreme ambient temperatures.  相似文献   

8.
The phylogenetic diversity of extant lemurs represents one of the most important but least studied aspects of the conservation biology of primates. The phylogenetic diversity of a species is inversely proportional to the relative number and closeness of its phylogenetic relatives. Phylogenetic diversity can then be used to determine conservation priorities for specific biogeographic regions. Although Malagasy strepsirhines represent the highest phylogenetic diversity among primates at the global level, there are few phylogenetic data on species-specific and regional conservation plans for lemurs in Madagascar. Therefore, in this paper the following questions are addressed for extant lemurs: 1) how does the measure of taxonomic uniqueness used by Mittermeier et al. (1992 Lemurs of Madagascar; Gland, Switzerland: IUCN) equate with an index of phylogenetic diversity, 2) what are the regional conservation priorities based on analyses of phylogenetic diversity in extant lemurs, and 3) what conservation recommendations can be made based on analyses of phylogenetic diversity in lemurs? Taxonomic endemicity standardized weight (TESW) indices of phylogenetic diversity were used to determine the evolutionary component of biodiversity and to prioritize regions for conserving lemur taxa. TESW refers to the standardization of phylogenetic diversity indices for widespread taxa and endemicity of species. The phylogenetic data came from recent genetic studies of Malagasy strepsirhines at the species level. Lemur species were assigned as being either present or absent in six biogeographic regions. TESW indices were combined with data on lemur complementarity and protected areas to assign conservation priorities at the regional level. Although there were no overall differences between taxonomic ranks and phylogenetic rankings, there were significant differences for the top-ranked taxa. The phylogenetic component of lemur diversity is greatest for Daubentonia madagascariensis, Allocebus trichotis, Lepilemur septentrionalis, Indri indri, and Mirza coquereli. Regional conservation priorities are highest for lemurs that range into northeast humid forests and western dry forests. Expansion of existing protected areas in these regions may provide the most rapid method for preserving lemurs. In the long term, new protected areas must be created because there are lemur species that: 1) are not found in existing protected areas, 2) exist only in one or two protected areas, and 3) are still being discovered outside the current network of protected areas. Data on the population dynamics and feeding ecology of phylogenetically important species are needed to ensure that protected areas adequately conserve lemur populations in Madagascar.  相似文献   

9.

Background

Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage. The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation. However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters—including morphological differences, reproductive isolation, and gene tree monophyly—that are typically used as evidence for separately evolving lineages.

Methodology

In this study, we assembled multiple lines of evidence from the analysis of mtDNA and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lemur lineages across the island of Madagascar. Our study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed.

Conclusions

The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. We find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear population structure. Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and geographically widespread taxa, as well as newly resolved patterns of micro-endemism revealed through expanded field sampling into previously poorly and well-sampled regions.  相似文献   

10.
Partial exon 2 sequences (202 bp) of the lemur Mhc-DRB genes were sequenced. A total of 137 novel sequences were detected in 66 lemurs, representing four out of the five extant families. Trans-species polymorphisms and even identical sequences were observed not only among genera but also among families. Based on the time-scale of lemur evolution, these findings suggest that some identical sequences have been maintained for more than 40 million years. This is in contrast to the evolutionary mode of simian DRB genes, where such identical sequences have been retained for at most several million years. To explore the reasons behind these unexpected findings, the degree of recombination and the synonymous substitution rate in lemurs and simians were examined. We found that (1) little difference existed in the extent of recombination, (2) frequent recombination occurred within the alpha-helix as well as between the beta-pleated sheet and the alpha-helix, and (3) the synonymous substitution rate was significantly reduced in lemur lineages. Upon phylogenetic analysis, lemur DRB genes were clustered by themselves and separated from the other primate DRB genes (simians and non-Malagasy prosimians). This result suggests that the DRB variations in extant lemur populations have been generated after the divergence of the lemurs from the remaining primates. This mode of substitution accumulation is also supported by a pattern of mismatch distribution among lemur DRB genes. These observations correspond with the postulation that a severe bottleneck occurred when the ancestors of lemurs settled into Madagascar from the African continent.  相似文献   

11.
The lack of sexual size dimorphism among lemurs is puzzling given the high degree of polygyny in this clade. It has been proposed that the unique ecological conditions of Madagascar favour rapid completion of growth, limiting the opportunities for bimaturism and sexual size dimorphism in lemurs. Using recently compiled large data sets on many species across the lemur clade, I examined the prevalence of sexual size monomorphism of body mass among lemurs and tested the hypothesis that limited growth durations constrain sexual size dimorphism. I used segmented regression analyses to accurately model growth in each species. The majority of species analysed exhibited a period of rapid growth followed by a distinct period of slow growth prior to attainment of adult body mass. Whereas the first period of growth was constrained by the need to attain the majority of adult body mass prior to the onset of the infant's first dry season, the subsequent period of slow growth was unconstrained and sufficiently long to promote sexual bimaturism. Sex differences in the duration and rate of growth during this second growth phase appeared to account for the sexual size dimorphism exhibited by three lemur species. Therefore, constraints on growth processes do not limit sexual size dimorphism in lemurs, and other explanations for the prevalence of sexual size monomorphism in this clade should be examined. The importance of considering ontogeny in future investigations of sexual size monomorphism in lemurs is highlighted.  相似文献   

12.
A nuclear gene, FLOWERING LOCUS T (FT) homolog, was cloned from Phyllostachys meyeri as PmFT. Its putative copy number was estimated as four by Southern blot analysis, and the two copies were completely sequenced. Twenty-seven FT homolog sequences of bambusoid and early diverging grasses comprised 172-bp exons, and 357- to 785-bp introns exhibited 0-58.9% pairwise divergence with six modal levels. Parsimony analyses of the FT homologs rooted at Pharus virescens produced six equally parsimonious trees. In the strict consensus tree, five clades were resolved; they were affected by divergence of the intron region rather than exon region. The basal clade was Puelioideae, followed by Olyreae clade including Oryza sativa. Streptogyneae clade combined the Olyreae clade with terminal sister clades of the Bambuseae, i.e., pantropical bamboos and East Asiatic temperate bamboos. The global topology suggested that FT homologs are significant for resolving the tribe level. However, the phylogeny of FT homologs does not resolve monophyly in Bambusoideae because of intercalary positioning by Streptogyneae clade. We discussed the role of FT homologs in controlling the inflorescence architecture and position of Streptogyneae in the bamboo phylogeny.  相似文献   

13.
? Premise of the study: It has been 8 years since the last comprehensive analysis of divergence times across the angiosperms. Given recent methodological improvements in estimating divergence times, refined understanding of relationships among major angiosperm lineages, and the immense interest in using large angiosperm phylogenies to investigate questions in ecology and comparative biology, new estimates of the ages of the major clades are badly needed. Improved estimations of divergence times will concomitantly improve our understanding of both the evolutionary history of the angiosperms and the patterns and processes that have led to this highly diverse clade. ? Methods: We simultaneously estimated the age of the angiosperms and the divergence times of key angiosperm lineages, using 36 calibration points for 567 taxa and a "relaxed clock" methodology that does not assume any correlation between rates, thus allowing for lineage-specific rate heterogeneity. ? Key results: Based on the analysis for which we set fossils to fit lognormal priors, we obtained an estimated age of the angiosperms of 167-199 Ma and the following age estimates for major angiosperm clades: Mesangiospermae (139-156 Ma); Gunneridae (109-139 Ma); Rosidae (108-121 Ma); Asteridae (101-119 Ma). ? Conclusions: With the exception of the age of the angiosperms themselves, these age estimates are generally younger than other recent molecular estimates and very close to dates inferred from the fossil record. We also provide dates for all major angiosperm clades (including 45 orders and 335 families [208 stem group age only, 127 both stem and crown group ages], sensu APG III). Our analyses provide a new comprehensive source of reference dates for major angiosperm clades that we hope will be of broad utility.  相似文献   

14.
Oligopeptide transporters (OPTs) encode integral membrane-localized proteins and have a broad range of substrate transport capabilities.Here,28 BrrOPT genes were identified in the turnip.Phylogenetic analyses revealed two well-supported clades in the OPT family,containing 15 BrrOPTs and 13 BrrYSLs. The exon/intron structure of OPT clade are conserved but the yellow stripe-like (YSL) clade was different. The exon/intron of the YSL clade possesses structural differences,whereas the YSL class motifs structure are conserved.The OPT genes are distributed unevenly among the chromosomes of the turnip genome. Phylogenetic and chromosomal distribution analyses revealed that the expansion of the OPT gene family is mainly attributable to segmental duplication.For the expression profiles at different developmental stages,a comprehensive analysis provided insights into the possible functional divergence among members of the paralog OPT gene family.Different expression levels under a variety of ion deficiencies also indicated that the OPT family underwent functional divergence during long-term evolution. Furthermore,BrrOPT8.1,BrrYSL1.2,BrrYSL1.3,BrrYSL6 and BrrYSL9 responded to Fe (Ⅱ) treatments and BrrYSL7 responded to calcium treatments,BrrYSL6 responded to multiple treatments in root,suggesting that turnip OPTs may be involved in mediating cross-talk among different ion deficiencies.Our data provide important information for further functional dissection of BrrOPTs,especially in transporting metal ions and nutrient deficiency stress adaptation.  相似文献   

15.
Recent morphological and molecular phylogenetic studies of mouse lemurs (Microcebus) living in the western and southern regions of Madagascar have shown that specific diversity had been considerably underestimated. In large part, this underestimate was due to the lack of sufficient specimens from given localities to assess properly the level of phenotypic variation within and between populations. The accurate delineation of specific boundaries has no doubt been confounded by the diminutive size, nocturnal habits, and subtle morphological variation characteristic of mouse lemurs, which can make field identification of individuals problematic. We illustrate the use of molecular phylogenetic analysis to reveal reproductive isolation in two sympatric mouse lemur species, Microcebus murinus and M. griseorufus. Their documentation in the Berenty Private Reserve in the extreme south of Madagascar verifies the historically-broad distribution of Microcebus griseorufus, a species recently resurrected from synonomy.  相似文献   

16.
Aim Early diversification of allodapine bees occurred in Africa c. 50 Ma. They are most abundant in sub‐Saharan Africa and Australia, and one of the oldest phylogenetic divergences in the tribe involves a split between an African + Malagasy clade and an Australian clade. The historical biogeographical scenario for this has been highly problematic, entailing an Eocene dispersal from Africa to Australia, followed by an unresolved, and apparently rapid, set of bifurcations leading to the Australian ‘exoneurine’ genera. Here we use an expanded taxon set of Australian species to explore the timing and historical biogeography of the exoneurine radiation. Location Australia, Africa, Madagascar. Methods One nuclear gene (F2 copy of elongation factor 1α) and two mitochondrial genes (cytochrome c oxidase subunit I and cytochrome b) were sequenced for 33 Australian exoneurine species from all five genera found on the continent, as well as for an additional 37 species from all non‐parasitic genera in the remainder of the tribe. We used Bayesian inference analyses to study phylogenetic topology and penalized likelihood analyses to infer key dates of divergence within the tribe. We also used lineage‐through‐time (LTT) analyses and Bayesian analyses to explore the tempo of radiations and biogeographical history of the exoneurines. Results Results from the phylogenetic analyses were congruent with previous studies, indicating a single colonization event c. 34 Ma, too late for Gondwanan vicariance models, and too early for a Laurasian dispersal route. In contrast to earlier studies, we show that this colonization event did not result in an ancient rapid radiation. However, LTT patterns indicated a rapid radiation of the temperate‐adapted genera Exoneura and Brevineura, but not of the xeric‐adapted genus Exoneurella, from 10 to 6 Ma. Main conclusions Our results indicate a trans‐oceanic dispersal event from Africa to Australia, most likely via Antarctica, with an accelerated diversification of temperate‐adapted lineages during the major Late Miocene event referred to as the ‘Hill Gap’. This is the first study to link radiations in Australian bee faunal elements to changing climate, and differs from many other plant and insect phylogenetic studies by showing increased radiation of temperate clades, rather than xeric clades, with increasing aridification of Australia.  相似文献   

17.
The ring-tailed lemur (Lemur catta) is an endangered species found in southwestern Madagascar, and understanding infectious disease susceptibility is an essential step towards the preservation of wild and captive lemur populations. Lemurs are primates that are widely dispersed throughout the island of Madagascar and may serve as hosts or reservoirs for zoonotic infections. The aim of this study was to determine the prevalence of antibodies to West Nile virus (WNV), simian immunodeficiency virus (SIV), and herpes simplex virus type 1 (HSV-1) in a population of free-ranging ring-tailed lemur from the Beza Mahafaly Special Reserve, Madagascar. Samples were collected from 50 animals during field capture studies in June and July 2004 and assayed for presence of viral antibodies during the 12 mo following collection. Forty-seven of the 50 lemurs sampled had antibodies against WNV detectable by epitope-blocking enzyme-linked immunosorbent assay (ELISA). In addition, 50 of 50 samples had titers against WNV ranging from 80 to > or = 1,280 using plaque reduction neutralization test (PRNT(90)). Ten lemurs had antibodies against lentiviral antigens as determined by Western blot analysis. None of the lemurs had antibodies against HSV-1 using ELISA.  相似文献   

18.
The gray mouse lemur (Microcebus murinus), one of the world’s smallest primates, is thought to share a similar ecological niche and many anatomical traits with early euprimates. As a result, it has been considered a suitable model system for early primate physiology and behavior. Moreover, recent studies have demonstrated that mouse lemurs have comparable cognitive abilities and cortical functional organization as haplorhines. Finally, the small brain size of mouse lemurs provides us with actual lower limits for miniaturization of functional brain circuits within the primate clade. Considering its phylogenetic position and early primate-like traits, the mouse lemurs are a perfect model species to study the early evolution of primate brains.  相似文献   

19.
20.
Edge effects are caused by the penetration of abiotic and biotic conditions from the matrix into forest interiors. Although edge effects influence the biogeography of many tropical organisms, they have not been studied directly in primates. Edge effects are particularly relevant to lemurs due to the loss of 80-90% of forests in Madagascar. In this study, data are presented on how biotic edge effects influenced the distribution and density of lemurs in the Vohibola III Classified Forest in southeastern Madagascar. In total, 415 lemur surveys were conducted during June-October 2003 and May-September 2004 along six 1,250-m transects that ran perpendicular to the forest edge. Data were also collected on lemur food trees along the six transects (density, height, diameter at breast height, area, volume, and distance to forest edge). Four nocturnal species (Avahi laniger, Cheirogaleus major, Lepilemur microdon, and Microcebus rufus) and four diurnal species (Eulemur rubriventer, Eulemur fulvus rufus, Hapalemur grisesus griseus, and Propithecus diadema edwardsi) were sighted during surveys. Regression analyses of lemur densities as a function of distance to forest edge provided edge tolerances for A. laniger (edge-tolerant), M. rufus (edge-tolerant), E. rubriventer (edge-tolerant or omnipresent), and H. g. griseus (omnipresent). The density and distribution of M. rufus and their foods trees were correlated. Edge-related variations in food quality and predation pressures may also be influencing lemurs in Vohibola III. Tolerance for edge effects may explain, in part, how lemurs have survived extreme habitat loss and forest fragmentation in southeastern Madagascar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号