共查询到20条相似文献,搜索用时 0 毫秒
1.
Justin A. G. Hubbard D. Andrew R. Drake Nicholas E. Mandrak 《Diversity & distributions》2023,29(8):986-996
Aim
We employed a climate-matching method to evaluate potential source regions of freshwater invasive species to an introduced region and their potential secondary spread under historical and future climates.Location
Global source regions, with primary introductions to the Laurentian Great Lakes and secondary introductions throughout North America.Methods
We conducted a climate-match analysis using the CLIMATE algorithm to estimate global source freshwater ecoregions under historical and future climates with an ensemble of global climate models for climate-change scenario SSP5-8.5. Given existing research, we use a climate match of ≥71.7% between ecoregions to indicate climatic conditions that will not inhibit the survival of introduced freshwater organisms. Further, we estimate the secondary spread of freshwater invaders to the ecoregions of North America under historical and future climates.Results
We identified 54 global freshwater ecoregions with a climate match ≥71.7% to the recipient Laurentian Great Lakes under historical climatic conditions, and 11 additional ecoregions were predicted to exceed the threshold under climate change. Three of the 11 ecoregions were located in South America, a continent where no matches existed under historical climates and eight were located in the southern United States, southern Europe, Japan and New Zealand. Further, we identify 34 North American ecoregions of potential secondary spread of freshwater invasions from the Great Lakes under historical climatic conditions, and five ecoregions were predicted to exceed the threshold under climate change.Main Conclusion
We provide a climate-match method that can be employed to assess the sources and spread of freshwater invasions under historical and future climate scenarios. Our climate-match method predicted increases in climate match between the recipient region and several potential source regions, and changes in areas of potential spread under climate change. The identified ecoregions are candidates for detailed biosecurity risk assessments and related management actions. 相似文献2.
Background and AimsAndropogon gerardii is a highly productive C4 grass species with a large geographic range throughout the North American Great Plains, a biome characterized by a variable temperate climate. Plant traits are often invoked to explain growth rates and competitive abilities within broad climate gradients. For example, plant competition models typically predict that species with large geographic ranges benefit from variation in traits underlying high growth potential. Here, we examined the relationship between climate variability and leaf-level traits in A. gerardii, emphasizing how leaf-level microanatomical traits serve as a mechanism that may underlie variation in commonly measured traits, such as specific leaf area (SLA).MethodsAndropogon gerardii leaves were collected in August 2017 from Cedar Creek Ecosystem Science Reserve (MN), Konza Prairie Biological Station (KS), Platte River Prairie (NE) and Rocky Mountain Research Station (SD). Leaves from ten individuals from each site were trimmed, stained and prepared for fluorescent confocal microscopy to analyse internal leaf anatomy. Leaf microanatomical data were compared with historical and growing season climate data extracted from PRISM spatial climate models.Key ResultsMicroanatomical traits displayed large variation within and across sites. According to AICc (Akaike’s information criterion adjusted for small sample sizes) selection scores, the interaction of mean precipitation and temperature for the 2017 growing season was the best predictor of variability for the anatomical and morphological traits measured here. Mesophyll area and bundle sheath thickness were directly correlated with mean temperature (annual and growing season). Tissues related to water-use strategies, such as bulliform cell and xylem area, were significantly correlated with one another.ConclusionsThe results indicate that (1) microanatomical trait variation exists within this broadly distributed grass species, (2) microanatomical trait variability appears likely to impact leaf-level carbon and water use strategies, and (3) microanatomical trait values vary across climate gradients, and may underlie variation in traits measured at larger ecological scales. 相似文献
3.
The range of the Canada lynx (Lynx canadensis) has contracted substantially from its historical range. Using harvest records, we found that the southern range of the lynx in Ontario in the late 1940s collapsed and then, in a short period of time, increased to its largest extent in the mid‐1960s when the lynx range spread south of the boreal forest for a decade. After this expansion, the southern range contracted northwards beginning in the 1970s. Most recently, there has been a slight expansion between 2010 and 2017. We have attributed these dynamics on the southern range periphery to the fluctuation of the boreal lynx population in the core of the species'' range. In addition, connectivity to boreal lynx populations and snow depth seemed to condition whether the lynx expanded into an area. However, we did not find any evidence to suggest that these changes were due to anthropogenic landscape disturbances or competition. The boreal lynx population does not reach the peak abundance it once did, without which we would not expect to see large expansions of the southern lynx range as in the mid‐1960s. Our results suggest that the southern lynx range in Ontario has been driven by the magnitude of the boreal lynx population cycle, connectivity to the boreal forest, and snow conditions. Future persistence of lynx in the southern range periphery will likely depend on dynamics in the range core. 相似文献
4.
5.
1. The Laurentian Great Lakes are among the most invaded freshwater ecosystems in the world. Historically, the major vector for the introduction of non‐indigenous species (NIS) has been the release of contaminated ballast water via transoceanic ships. Despite regulations implemented in 1993, requiring vessels carrying fresh ballast water to exchange this water with saline ocean water, new reports of invasions have continued. 2. NIS often have a wide environmental tolerance allowing them to adapt to and invade a variety of habitats. It has been hypothesized that NIS with broad salinity tolerance may be able to survive ballast water exchange (BWE) and continue to pose an invasion risk to the Great Lakes. 3. We tested the short‐term salinity tolerance of eight recent invaders to the Great Lakes, specifically three cladocera (Bosmina coregoni, Bythotrephes longimanus, Cercopagis pengoi), two molluscs (Dreissena polymorpha, Dreissena rostriformis bugensis), and one species each of the families Gammaridae, Mysidae and Gobidae (Echinogammarus ischnus, Hemimysis anomala, Neogobius melanostomus) to determine if they could have survived salinities associated with BWE. 4. Overall, short‐term exposure to highly saline water dramatically reduced survival of all species. Two different methods of BWE tested, simultaneous and sequential, were equally effective in reducing survival. Species that survived the longest in highly saline water either possess behavioural characteristics that reduce exposure to adverse environments (valve closure; both Dreissena species) or are reported to have some degree of salinity tolerance in their native region (Echinogammarus). Given that exposure in our trials lasted a maximum of 48 h, and that species in ballast tanks would typically be exposed to saline water for c. 5 days, it appears that BWE is an effective method to reduce the survival of these NIS. These results provide impetus for tightening policy and monitoring of BWE, in particular for ships entering the Great Lakes from freshwater ports. 相似文献
6.
Sarah A. Bailey Kanavillil Nandakumar † Ian C. Duggan ‡ Colin D. A. van Overdijk Thomas H. Johengen David F. Reid Hugh J. MacIsaac 《Diversity & distributions》2005,11(5):453-460
Ships that enter the Great Lakes laden with cargo carry only residual ballast water and sediment in ballast tanks. These ships are designated ‘no ballast on board’ (NOBOB) and constitute > 90% of inbound traffic. We conducted in situ experiments using emergence traps to assess the viability and the introduction potential of invertebrate diapausing stages present in ships’ ballast sediment. All trials commenced while vessels operated on the lower lakes (Erie, Ontario) and were completed 6–11 days later at ports on the upper lakes (Michigan, Lake Superior). Eight trials were conducted on four ships using five different ballast sediments. Hatching was observed on every ship, although not from all sediments on all ships. Overall hatch rates were very low (0.5 individuals per 500 g sediment), typically involving activation of < 0.05% of total eggs present. Five species of rotifers and copepod nauplii were hatched from ballast sediments, although only one or two species typically hatched from any one sediment. Results of this study indicate that hatching of diapausing eggs contained in ballast sediment of NOBOB ships poses a relatively low risk of invasion to the Great Lakes. However, as reproduction may occur in tanks, and non‐indigenous species may be involved in numerous introduction events, the risk posed by this vector is small but potentially important. While dormancy is a characteristic enabling enhanced survival during transportation in ballast tanks, it becomes a hindrance for introduction. 相似文献
7.
Aim Hull fouling is a leading vector for the introduction of marine, non‐indigenous species (NIS) worldwide, yet its importance to freshwater habitats is poorly understood. We aimed to establish the complement of NIS transported via this vector to the Great Lakes and to determine if they pose an invasion risk. Location Laurentian Great Lakes. Methods During 2007 and 2008, we collected scrapings from exterior surfaces as well as underwater video‐transects from 20 vessels shortly after their arrival in Great Lakes’ ports. Invertebrates present were sorted and identified in the laboratory. Results Total estimated abundance averaged > 170,000 invertebrates per ship belonging to 109 taxa. Most (72%) of these taxa were freshwater species already present in the Great Lakes, whereas 11 and 31% were native to estuarine and marine habitats respectively, and would not be expected to survive in this habitat. Abundance was dominated by barnacles (51%), cladocerans (19%), bivalves (12%) and amphipods (11%). Sea‐chest grating and the rudder were hot‐spots for biofouling. Invertebrate diversity and total abundance were positively associated with total time spent in port during the last year and time in Pacific South American ports and negatively related to time in high latitudes and sailing speed. Although we found some live, established invaders such as Gammarus tigrinus and Dreissena rostriformis bugensis, only one individual of a freshwater NIS (Alexandrovia onegensis, Oligochaeta) not yet reported in the Great Lakes was detected. The animal’s poor condition and seemingly low population abundance indicated the risk of live introduction by this vector was likely quite low. Main conclusion Our results indicate that hull fouling appears to pose a low risk of introductions of new species capable of surviving in the Great Lakes, unlike foreign‐sourced freshwater ballast water that historically was discharged by these transoceanic vessels. 相似文献
8.
Günther Klonner Johannes Wessely Andreas Gattringer Dietmar Moser Iwona Dullinger Karl Hülber Sabine B. Rumpf Svenja Block Oliver Bossdorf Marta Carboni Luisa Conti Wayne Dawson Emily Haeuser Martin Hermy Tamara Münkemüller Madalin Parepa Wilfried Thuiller Sebastiaan Van der Veken Kris Verheyen Mark van Kleunen Franz Essl Stefan Dullinger 《Ecography》2019,42(9):1548-1557
Climate warming is supposed to enlarge the area climatically suitable to the naturalization of alien garden plants in temperate regions. However, the effects of a changing climate on the spread of naturalized ornamentals have not been evaluated by spatially and temporarily explicit range modelling at larger scales so far. Here, we assess how climate change and the frequency of cultivation interactively determine the spread of 15 ornamental plants over the 21st century in Europe. We coupled species distribution modelling with simulations of demography and dispersal to predict range dynamics of these species in annual steps across a 250 × 250 m raster of the study area. Models were run under four scenarios of climate warming and six levels of cultivation intensity. Cultivation frequency was implemented as size of the area used for planting a species. Although the area climatically suitable to the 15 species increases, on average, the area predicted to be occupied by them in 2090 shrinks under two of the three climate change scenarios. This contradiction obviously arises from dispersal limitations that were pronounced although we assumed that cultivation is spatially adapting to the changing climate. Cultivation frequency had a much stronger effect on species spread than climate change, and this effect was non‐linear. The area occupied increased sharply from low to moderate levels of cultivation intensity, but levelled off afterwards. Our simulations suggest that climate warming will not necessarily foster the spread of alien garden plants in Europe over the next decades. However, climatically suitable areas do increase and hence an invasion debt is likely accumulating. Restricting cultivation of species can be effective in preventing species spread, irrespective of how the climate develops. However, for being successful, they depend on high levels of compliance to keep propagule pressure at a low level. 相似文献
9.
Climate change will have substantial impacts on biodiversity, particularly for aquatic species. Warming temperatures and changing weather patterns will also remobilize and modify chemical partitioning. Holding millions of cubic yards of sediments contaminated with persistent legacy chemicals such as polychlorinated biphenyls (PCBs) and dioxins, the Laurentian Great Lakes are a laboratory for observing interactions between biological and chemical responses to climate change. They provide a wide range of habitat to a variety of species, from littoral forage fish to deep‐water predators. In this paper, we couple bioenergetic and bioaccumulation models to investigate the biological and chemical effects of climate change in the Great Lakes. We consider three species: round goby, a warm‐water invasive forage fish; mottled sculpin, a cool‐water native forage fish; and lake trout, a cold‐water native predator. Using our coupled models, we calculate the accumulation of a representative persistent chemical, PCB‐77, under four climate scenarios for Lake Erie and Lake Superior. Predator–prey (lake trout–round goby) interactions and food availability (high–low) are incorporated into our simulations. For cool‐ to cold‐water species (sculpin, lake trout) we find that warm temperatures limit growth. For warm‐water species (round goby) cold temperatures limit growth. The impact of climate warming on growth depends on the winter lows as well as the summer highs of the scenario, in combination with the species' critical upper and lower thermal limits. We find conditions for high growth and consumption rates generally lead to high bioaccumulation. However, this can be confounded by predator–prey dynamics, as mismatches in the temperature preferences of predator and prey can lead to mismatches in relative growth and uptake rates. As predator–prey dynamics are expected to undergo substantial shifts with changing climate, these relative thermal sensitivities will be key in determining the implications of climate change for bioaccumulation, particularly in top predator species. 相似文献
10.
Shane C. Lishawa Beth A. Lawrence Dennis A. Albert Daniel J. Larkin Nancy C. Tuchman 《Ecology and evolution》2019,9(11):6231-6244
Plant invasions result in biodiversity losses and altered ecological functions, though quantifying loss of multiple ecosystem functions presents a research challenge. Plant phylogenetic diversity correlates with a range of ecosystem functions and can be used as a proxy for ecosystem multifunctionality. Laurentian Great Lakes coastal wetlands are ideal systems for testing invasive species management effects because they support diverse biological communities, provide numerous ecosystem services, and are increasingly dominated by invasive macrophytes. Invasive cattails are among the most widespread and abundant of these taxa. We conducted a three‐year study in two Great Lakes wetlands, testing the effects of a gradient of cattail removal intensities (mowing, harvest, complete biomass removal) within two vegetation zones (emergent marsh and wet meadow) on plant taxonomic and phylogenetic diversity. To evaluate native plant recovery potential, we paired this with a seed bank emergence study that quantified diversity metrics in each zone under experimentally manipulated hydroperiods. Pretreatment, we found that wetland zones had distinct plant community composition. Wet meadow seed banks had greater taxonomic and phylogenetic diversity than emergent marsh seed banks, and high‐water treatments tended to inhibit diversity by reducing germination. Aboveground harvesting of cattails and their litter increased phylogenetic diversity and species richness in both zones, more than doubling richness compared to unmanipulated controls. In the wet meadow, harvesting shifted the community toward an early successional state, favoring seed bank germination from early seral species, whereas emergent marsh complete removal treatments shifted the community toward an aquatic condition, favoring floating‐leaved plants. Removing cattails and their litter increased taxonomic and phylogenetic diversity across water levels, a key environmental gradient, thereby potentially increasing the multifunctionality of these ecosystems. Killing invasive wetland macrophytes but leaving their biomass in situ does not address their underlying mechanism of dominance and is less effective than more intensive treatments that also remove their litter. 相似文献
11.
Trefor B. Reynoldson 《Journal of Aquatic Ecosystem Stress and Recovery (Formerly Journal of Aquatic Ecosystem Health)》1993,2(2):81-85
Historically management of human use of ecosystems has been based around engineering and chemical approaches and through the construction of treatment facilities, effluent controls and setting chemical concentrations, both at end of pipe and in the aquatic environment. However, the general continued degradation of many ecosystems shows these approaches alone are insufficient. In the Laurentian Great Lakes the Great Lakes Water Quality Agreement was first signed in 1972 and ratified in 1978 and in 1987 tacitly acknowledged the problems with a chemical only approach by requiring the development of ecosystem objectives in the 1978 agreement. Furthermore, the agreement specifically identified numerical ecosystem objectives in the 1987 agreement. The evolution of ecosystem objectives in the Great Lakes has expanded from the strictly numerical objectives such as production of lake trout and abundance of the amphipod Pontoporeia hoyi. More recent developments in ecosystem objectives have been the inclusion of indicators for wildlife, habitat, human health and stewardship.Prepared as a discussion paper presented to the United Nations Economic Commission for Europe's seminar on an Ecosystems Approach to Water Management (May 27–31, 1991). 相似文献
12.
Forsythe PS Scribner KT Crossman JA Ragavendran A Baker EA Davis C Smith KK 《Journal of fish biology》2012,81(1):35-53
The associations were quantified between daily and interannual variation in the timing of a closed population of lake sturgeon Acipenser fulvescens migration and arrival at spawning sites with stream environmental and lunar covariates. Spawning data were gathered from 1262 fish in Black Lake, Michigan 2001 to 2008 and by video monitoring 2000 to 2002. Sex-specific variation in responses to external cues was also tested. Results showed that a greater number of individuals initiated migration from lake to riverine habitats at dawn and dusk relative to other times of the day. Current and lagged effects of water temperature and river discharge, and periods in the lunar cycle were important variables in models quantifying movements into the river and timing of adult arrival at spawning sites. Different suites of covariates were predictive of A. fulverscens responses during different periods of the spawning season. The timing of initiation of migration and spawning, and the importance of covariates to the timing of these events, did not differ between sexes. Stream flow and temperature covaried with other variables including day length and the lunar cycle. Anthropogenic disruption of relationships among variables may mean that environmental cues may no longer reliably convey information for Acipenseriformes and other migratory fishes. 相似文献
13.
Testate amoebae (Protozoa: Rhizopoda) are common inhabitants of peatlands. Strong relationships between community composition and substrate moisture in Sphagnum‐dominated peatlands have made them particularly useful as hydrological proxies in environmental and palaeoenvironmental research. However, stability of these relationships in geographical space is important for widespread applicability. In this study, we compared testate amoeba communities inhabiting Sphagnum‐dominated peatlands of the Great Lakes and Rocky Mountain regions of North America. Our primary objectives were to describe patterns of community composition in the two regions, develop hypotheses to explain differences, and determine if taxa occupy similar ecological niches with respect to substrate moisture in both places. Our results indicated that testate amoeba communities are relatively different in the two regions, and these differences are probably caused by differences in climate and peatland trophic status, although other factors may also play a role. However, many taxa do occur in both regions and these taxa had comparable moisture preferences in each region, suggesting that the ecological niches of taxa with respect to substrate moisture are similar even within communities of relatively different composition. 相似文献
14.
Mitochondrial (mt) DNA control region sequences were used to test the genetic and phylogeographic structure of walleye Stizostedion vitreum populations at different geographical scales: among spawning sites, lake basins, lakes, and putative glacial refugia in the Great Lakes region. Sequencing 199 walleye revealed nucleotide substitutions and tandemly repeated sequences that varied in copy number, as well as in sequence composition, in 1200 bp of the mtDNA control region. Variable numbers of copies of an 11-bp tandem repeat showed no geographical patterning and were not used in further analyses. Substitutions in the other areas of the control region yielded 19 haplotypes, revealing phylogeographic structure and significant differences among glacial refugia, lakes, basins and some spawning sites. Differences among spawning populations were consistent with reduced gene flow, philopatry and possible natal homing. Analysis of spawning populations showed consistency of genotypic frequencies among years and between males and females, supporting philopatry in both sexes. The unglaciated plateau in southern Ohio, USA housed a very different haplotype that diverged prior to the Missouri, Mississippi and Atlantic glacial refugia types. Haplotypes from the three refugia colonized the Great Lakes after retreat of the Wisconsin glaciers, and their present distribution reflects the geography of their prior isolation and differential colonization. Populations that became associated with spawning localities appear to have diverged further due to philopatry, resulting in fine-scale phylogeographic structuring. 相似文献
15.
Red pine (Pinus resinosa Ait.) was widely planted across the Great Lakes region of North America in the early 20th century to restore tree cover to degraded forest and agricultural lands. In this study, a dendrochronological assessment of radial growth response to climate was conducted in an 82-year-old, previously thinned red pine plantation forest in southern Ontario, Canada. Climate-growth relationships were analyzed at multi-monthly and annual time scales using a 72-year residual growth chronology (1942–2013). Warmer temperatures and periodic drought during the current and previous growing seasons were associated with decreased growth, while higher precipitation during the early part of the current growing season was associated with increased growth. Moving interval correlation analysis of long-term trends indicated that climate-growth relations were temporally unstable due to thinning and variation in climate over the length of the chronology. The correlation between climate and growth was stronger when stand density was relatively high and diminished in the two decades following thinning. These results indicate that growth of red pine plantations near the species’ southern range limit may be much reduced if exposed to a warmer, drier future climate and that periodic thinning can help mitigate the impacts of future climate change on these plantations. 相似文献
16.
THOMAS DENK FRIÐGEIR GRÍMSSON ZLATKO KVAEK 《Botanical journal of the Linnean Society. Linnean Society of London》2005,149(4):369-417
A large number of plant macrofossils from several Middle to Upper Miocene localities from Iceland have been studied. The fossil material includes four ferns and fern allies, seven conifers, and about 40 species of flowering plants. Betula islandica and Salix gruberi are described as new species. Coniferous twigs previously ascribed to the genus Sequoia are shown to belong to Cryptomeria based on macro‐morphological and epidermal features. Fossil plants from Iceland are compared with coeval fossil taxa from Europe and North America and with living plants. The main finding is that the Miocene flora of Iceland belongs to a widespread Neogene northern hemispheric floral type including plants whose representatives are restricted to East Asia, North America and to western Eurasia at the present time. Previously inferred conspicuous similarities to North American modern equivalents appear to be misleading. The type of vegetation in four plant‐bearing sedimentary formations from the late Mid Miocene to Late Miocene, the 12 Ma Brjánslækur‐Seljá Formation, the 10 Ma Tröllatunga‐Gautshamar Formation, the 9–8 Ma Skarðsströnd‐Mókollsdalur Formation, and the 7–6 Ma Hreðavatn‐Stafholt Formation, corresponds to a humid temperate broadleaved (deciduous)–coniferous mixed forest dominated by Betulaceae, Fagaceae and Acer. Changes in species composition in the sedimentary formations reflect a shift from warm temperate (Cfa climate) to cool temperate (Cfb climate) conditions from the late Mid Miocene to the latest Miocene. This shift was connected to repeated phases of extinction and colonization. Specifically, one set of thermophilic taxa including Magnolia, Liriodendron, Sassafras and Comptonia went extinct between 12 and 10 Ma, and appears to have been replaced by another set of thermophilic taxa in the 10 Ma formation (Juglandaceae aff. Pterocarya/Cyclocarya, Rhododendron ponticum type). The 9–8 and 7–6 Ma formations are characterized by taxa that migrated to Iceland from Europe, such as Fagus gussonii, Betula cristata and Pterocarya fraxinifolia type. Although there is convincing evidence that plants colonized Iceland both from North America and Europe until 12 Ma, migration in the younger formations (9–8, 7–6 Ma) is suggested to have occurred mainly from Europe. © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society, 2005, 149 , 369–417. 相似文献
17.
JED MEUNIER RUI SONG R. SCOTT LUTZ DAVID E. ANDERSEN KEVIN E. DOHERTY JOHN G. BRUGGINK EILEEN OPPELT 《The Journal of wildlife management》2008,72(2):440-448
ABSTRACT Investigation of bird migration has often highlighted the importance of external factors in determining timing of migration. However, little distinction has been made between short- and long-distance migrants and between local and flight birds (passage migrants) in describing migration chronology. In addition, measures of food abundance as a proximate factor influencing timing of migration are lacking in studies of migration chronology. To address the relationship between environmental variables and timing of migration, we quantified the relative importance of proximate external factors on migration chronology of local American woodcock (Scolopax minor), a short distance migrant, using event-time analysis methods (survival analysis). We captured 1,094 woodcock local to our study sites in Michigan, Minnesota, and Wisconsin (USA) during autumn 2002–2004 and documented 786 departure dates for these birds. Photoperiod appeared to provide an initial proximate cue for timing of departure. Moon phase was important in modifying timing of departure, which may serve as a navigational aid in piloting and possibly orientation. Local synoptic weather variables also contributed to timing of departure by changing the rate of departure from our study sites. We found no evidence that food availability influenced timing of woodcock departure. Our results suggest that woodcock use a conservative photoperiod-controlled strategy with proximate modifiers for timing of migration rather than relying on abundance of their primary food, earthworms. Managing harvest pressure on local birds by adjusting season lengths may be an effective management tool with consistent migration patterns from year to year based on photoperiod. 相似文献
18.
A modern pollen rain study was performed in a 300 km-long altitudinal transect (~ 28° N latitude) from 300 to 2300 m elevation. The higher elevation modern communities: epithermal oak–pines, pine–oak forest, pine forest, and mixed conifer forest were easy to distinguish from their pollen content. In contrast, lower elevation subtropical communities: thornscrub and tropical deciduous forest were difficult to separate, because they share many pollen taxa. Nevertheless we identify high frequencies of Bursera laxiflora as an important component of the tropical deciduous forest.Additionally, fossil pollen was analyzed at three sites located between 1700 and 1950 m altitude at ~ 28° latitude north in the Sierra Madre Occidental of northwestern Mexico. The sites were in pine–oak (Pinus–Quercus), pine, and mixed-conifer forests respectively. Shifts in the altitudinal distribution of vegetation belts were recorded for the last 12,849 cal yr BP, and climate changes were inferred. The lowest site (pine–oak forest) was surrounded by pine forest between 12,849 and 11,900 cal yr BP, suggesting a cold and relatively dry Younger Dryas period. The early Holocene was also cold but wetter, with mixed conifer forest with Abies (fir) growing at the same site, at 1700 m elevation, 300 m lower than today. After 9200 cal yr BP, a change to warmer/drier conditions caused fir migration to higher elevations and the expansion of Quercus at 1700 m. At 5600 cal yr BP Abies was growing above 1800 m and Picea (spruce) that is absent today, was recorded at 1950 m elevation. Fir and spruce disappeared from the 1950 m site and reached their present distribution (scattered, above 2000 m) after 1000 cal yr BP; we infer an episodic Holocene migration rate to higher elevations for Abies of 23.8 m/1000 cal yr and for Picea of 39.2 m/1000 cal yr. The late Holocene reflects frequent climate oscillations, with variations in the representation of forest trees. A tendency towards an openness of the forest is recorded for the last 2000 yrs, possibly reflecting human activities along with short-term climate change. 相似文献
19.
20.
Castor Muñoz Sobrino Pablo Ramil-Rego Luis Gómez-Orellana 《Vegetation History and Archaeobotany》2007,16(4):223-240
Northwest Iberia (Spain and Portugal) is a large and complex territory which is currently considered a contact border between
two different biogeographical regions, the Eurosiberian and the Mediterranean. Such complexity is clearly influenced by several
main factors, namely the winding mountain ranges of this region and their position on the peninsula, which result in several
markedly different environments coexisting within distances of only a few kilometres apart, such as extremely oceanic or continental
climates and high mountain areas or inland basins. This intricacy might also be reflected in the postglacial palaeoecological
reconstructions which have been made for different mountain areas of northwest Iberia. Several isolated pollen diagrams from
key sites in the area which have been published during the last decades have been questioned, because they show tendencies
or chronologies apparently incompatible with global dynamics affecting the North Atlantic. In this paper we explore the possible
integration of the biostratigraphies and chronologies of several selected pollen sites in this region. Northwest Iberia as
a whole has been firstly divided into several more homogeneous biogeographical units, and high quality pollen sequences from
each unit were selected to obtain reconstructions of local dynamics at each site and also approximations of the regional tendencies
in each unit. Subsequently, the correlation between the different regional tendencies and their coherence in relation to the
global climatic models performed for the North Atlantic is discussed. 相似文献