首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

2.
We recorded bat activity on Zakynthos island (Greece) to test the hypotheses that (1) olive ( Olea europea ) groves and native woodlands provide comparable foraging habitat for insectivorous bats, (2) lower foraging activity occurs in olive groves treated with insecticide chemicals. We acoustically sampled bat activity (passes per minute) in four wooded habitats (organic and non-organic olive groves, oak woodland ( Quercus ilex and Quercus coccifera ) and pine ( Pinus halepensis ) woodland from June to August 2005. Habitat type did not affect overall bat activity. A single application of insecticide chemicals annually did not affect activity over traditional olive groves. Habitat use on the island differed in several ways from that reported in studies at mainland sites. Most strikingly, pine woodland supported higher bat activity than expected relative to other habitat types, and we recorded unexpectedly high levels of M. capaccinii activity in woodland habitats. We suggest that traditional olive groves buffer some bat species from the effects of deforestation. Conservation plans for Mediterranean bats should consider the biodiversity value of these groves along with the need to conserve small woodland patches. Finally, understanding island-specific patterns of habitat use is essential to bat conservation on small off-shore islands.  相似文献   

3.
The endangered Mexican fishing bat, Myotis vivesi, appears to have suffered widespread extinction and population decline on islands throughout the Gulf of California, largely due to predation by introduced cats and rats. To restore populations of fishing bats and other native species, conservation efforts have focused on eradicating introduced vertebrates from several Gulf islands. These efforts assume that individuals from existing populations will recolonize islands and that continued dispersal will help sustain vulnerable populations thereafter. However, the extent of inter-island dispersal in fishing bats is unknown. In this study we analyzed patterns of genetic variation to gauge the extent of gene flow and, thus, potential dispersal among islands. DNA was sampled from 257 fishing bats on 11 Gulf islands (separated by ca. 6–685 km of open water), and individuals were genotyped at six microsatellite loci and haplotyped at a 282 bp fragment of the mtDNA control region. With microsatellites, we found weak population genetic structure and a pattern of isolation by distance, while with mtDNA we found strong structure but no isolation by distance. Our results indicate that island subpopulations separated by large expanses of open water are nonetheless capable of maintaining high genetic diversity and high rates of gene flow. Unfortunately, little is known about the spatial patterns of dispersal or mating system of fishing bats, and these behavioral factors, in particular female philopatry, might reduce the probability of the species recolonizing Gulf islands.  相似文献   

4.
In tropical rainforests environmental conditions vary dramatically from the ground to the canopy, resulting in a marked stratification in the way vertical space is used by organisms, but research work is often limited to the understorey layer. Aerial insectivorous bats are a highly diverse group that plays key roles in the ecology of rainforests, but their use of vertical space remains elusive. Using automatic ultrasound recording stations placed in the canopy, subcanopy and understorey we tested if bat activity and species diversity are vertically stratified, both in the forest interior and near the edges of water bodies. These patterns were tested separately for individual species, and for two functional groups – open space and edge space bats. Insectivorous bat activity increased by roughly seven fold, and species diversity doubled, from the understorey to the canopy. Both edge space and open space bats were more active in the upper strata, but this tendency was much more accentuated in the latter. Myotis riparius was the only species with greater activity near the understorey. These patterns were altered at the edges of water bodies, where vertical stratification was much less marked. The observed patterns are parsimoniously explained by constraints imposed by vegetation clutter that change across strata, which affect bat species differently. Only bats better adapted to closed spaces are usually capable of foraging within the understorey, whereas the majority of species can exploit the free spaces immediately below the canopy; open space bats seem to concentrate their activity above the canopy. This importance of the inter strata open spaces for bat foraging highlights the need to preserve pristine stratified rainforests, as even selective logging usually disrupts vertical stratification. Moreover, the concentration of insectivorous bats at the upper strata of rainforests underlines the need to include canopy level sampling in ecological studies.  相似文献   

5.
Abstract: The ability to accurately predict the potential occurrence of species of management concern is useful for wildlife managers, particularly for those whose management activities involve large areas where sampling is difficult due to logistical or financial constraints. During the summers of 2002 and 2003, we used mist nets to capture bats (Myotis yumanensis, M. californicus, M. evotis, M. thysanodes, Eptesicus fuscus, Lasionycteris noctivagans, Tadarida brasiliensis, Antrozous pallidus, Lasiurus borealis, and Lasiurus cinereus) in Whiskeytown National Recreation Area in north-central California, USA. We used landscape-scale variables, logistic regression, and Akaike's Information Criterion (AICc) to model species distributions and produce spatially discerning predictive occurrence maps. We developed a priori models that we used to determine which landscape-scale variables best discriminated between capture sites and non-capture sites. The odds of capturing a bat were 3.3 greater when total edge increased by 10,000 m, whereas for Yuma myotis (Myotis yumanensis), the odds of predicting presence were 0.2 greater when distance to lakes and ponds decreased by 2,000 m. Elevation was important in predicting the distribution of silver-haired bats (Lasionycteris noctivagans) and big brown bats (Eptesicus fuscus). Increasing elevation by 400 m decreased the odds of capturing a silver-haired bat by 0.1 and a big brown bat by 0.4. Classification accuracy for our models ranged from 80.9% for all bat species combined to 72.3% for Yuma myotis and silver-haired bats. Predictive occurrence models can be valuable to bat conservation efforts because they provide spatial data important for evaluating the effects of management activities on species distributions.  相似文献   

6.
The bat Myotis adversus hunts for prey by aerial hawking and by taking prey from the water surface with its feet (trawling). The flight performance and echolocation of this species were studied in Queensland, Australia, and comparisons were made with Myotis daubentoni , a bat filling a similar ecological niche in the Palaearctic Region. The bats foraged in very similar ways, using the same foraging tactics and feeding in similar habitats, yet they were not geometrically similar in shape. The slightly larger Myotis adversus had relatively larger wings than M. daubentoni , conferring a slightly lower wing-loading. Nevertheless, M. adversus flew faster than M. daubentoni during the searching phase of foraging. Myotis daubentoni turned in tighter circles than M. adversus . Both species used short frequency-modulated (FM) echolocation calls of a characteristic sigmoidal structure, and nulls typically observed in the calls were an observational artefact. Myotis adversus also adopted an unusual 'long'FM call while foraging. The relations between echolocation frequencies and body size were explored in male M. adversus . Specialized morphological and acoustic adaptations for prey capture by trawling in insectivorous bats are discussed.  相似文献   

7.
Shade coffee plantations have received attention for their role in biodiversity conservation. Bats are among the most diverse mammalian taxa in these systems; however, previous studies of bats in coffee plantations have focused on the largely herbivorous leaf-nosed bats (Phyllostomidae). In contrast, we have virtually no information on how ensembles of aerial insectivorous bats--nearly half the Neotropical bat species--change in response to habitat modification. To evaluate the effects of agroecosystem management on insectivorous bats, we studied their diversity and activity in southern Chiapas, Mexico, a landscape dominated by coffee agroforestry. We used acoustic monitoring and live captures to characterize the insectivorous bat ensemble in forest fragments and coffee plantations differing in the structural and taxonomic complexity of shade trees. We captured bats of 12 non-phyllostomid species; acoustic monitoring revealed the presence of at least 12 more species of aerial insectivores. Richness of forest bats was the same across all land-use types; in contrast, species richness of open-space bats increased in low shade, intensively managed coffee plantations. Conversely, only forest bats demonstrated significant differences in ensemble structure (as measured by similarity indices) across land-use types. Both overall activity and feeding activity of forest bats declined significantly with increasing management intensity, while the overall activity, but not feeding activity, of open-space bats increased. We conclude that diverse shade coffee plantations in our study area serve as valuable foraging and commuting habitat for aerial insectivorous bats, and several species also commute through or forage in low shade coffee monocultures.  相似文献   

8.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

9.
We expand a framework for estimating minimum area thresholds to elaborate biogeographic patterns between two groups of snakes (rattlesnakes and colubrid snakes) on islands in the western Gulf of California, Mexico. The minimum area thresholds for supporting single species versus coexistence of two or more species relate to hypotheses of the relative importance of energetic efficiency and competitive interactions within groups, respectively. We used ordinal logistic regression probability functions to estimate minimum area thresholds after evaluating the influence of island area, isolation, and age on rattlesnake and colubrid occupancy patterns across 83 islands. Minimum area thresholds for islands supporting one species were nearly identical for rattlesnakes and colubrids (~1.7 km2), suggesting that selective tradeoffs for distinctive life history traits between rattlesnakes and colubrids did not result in any clear advantage of one life history strategy over the other on islands. However, the minimum area threshold for supporting two or more species of rattlesnakes (37.1 km2) was over five times greater than it was for supporting two or more species of colubrids (6.7 km2). The great differences between rattlesnakes and colubrids in minimum area required to support more than one species imply that for islands in the Gulf of California relative extinction risks are higher for coexistence of multiple species of rattlesnakes and that competition within and between species of rattlesnakes is likely much more intense than it is within and between species of colubrids.  相似文献   

10.
Land conversion and modification threatens many wildlife and plant species in the northern Great Plains, including bats. Our objective was to assess the association of bat species with landscape features in the northern Great Plains of North Dakota, USA, taking the first step towards understanding the habitat needs of bats in this region. We examined patterns of bat activity across different landscapes, identified those landscape features associated with high levels of bat activity, and determined which specific land features (i.e., vegetation and water types) were most commonly associated with each bat species. We used passive acoustic monitoring to measure bat activity at sites across North Dakota, and assessed detailed land characteristics at each site. We used nonmetric multidimensional scaling and multivariate regression tree analysis to examine relationships between bat activity and landscape variables. Bat foraging activity was influenced by structural landscape characteristics and the availability of specific water resources. High levels of bat activity were associated with riparian forested areas of varying structural complexity, ponds, and, to a lesser extent, open riparian lands. Individual bat species were influenced by land type and water resources differently. We identified big brown bats (Eptesicus fuscus) and little brown bats (Myotis lucifugus) as indicators of open riparian and pond landscapes, respectively. These results highlight the importance of prairie riparian landscapes and maintaining heterogeneity across the landscape for conservation and management of bat communities. Further, we identified ponds as an important landscape feature for little brown bats, a species of conservation concern, indicating that this specific feature should be a focus of conservation efforts on prairie wetlands. © 2019 The Wildlife Society.  相似文献   

11.
Wetlands support unique biota and provide important ecosystem services. These services are highly threatened due to the rate of loss and relative rarity of wetlands in most landscapes, an issue that is exacerbated in highly modified urban environments. Despite this, critical ecological knowledge is currently lacking for many wetland‐dependent taxa, such as insectivorous bats, which can persist in urban areas if their habitats are managed appropriately. Here, we use a novel paired landscape approach to investigate the role of wetlands in urban bat conservation and examine local and landscape factors driving bat species richness and activity. We acoustically monitored bat activity at 58 urban wetlands and 35 nonwetland sites (ecologically similar sites without free‐standing water) in the greater Melbourne area, southeastern Australia. We analyzed bat species richness and activity patterns using generalized linear mixed‐effects models. We found that the presence of water in urban Melbourne was an important driver of bat species richness and activity at a landscape scale. Increasing distance to bushland and increasing levels of heavy metal pollution within the waterbody also negatively influenced bat richness and individual species activity. Areas with high levels of artificial night light had reduced bat species richness, and reduced activity for all species except those adapted to urban areas, such as the White‐striped free‐tailed bat (Austronomus australis). Increased surrounding tree cover and wetland size had a positive effect on bat species richness. Our findings indicate that wetlands form critical habitats for insectivorous bats in urban environments. Large, unlit, and unpolluted wetlands flanked by high tree cover in close proximity to bushland contribute most to the richness of the bat community. Our findings clarify the role of wetlands for insectivorous bats in urban areas and will also allow for the preservation, construction, and management of wetlands that maximize conservation outcomes for urban bats and possibly other wetland‐dependent and nocturnal fauna.  相似文献   

12.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

13.
A fundamental goal of ecology is to understand whether ecological communities are structured according to general assembly rules or are essentially dictated by random processes. In the context of fragmentation, understanding assembly patterns and their mechanistic basis also has important implications for conservation. Using distribution data of 20 bat species collected on 11 islands in Gatún Lake, Panama, we tested for non‐randomness in presence–absence matrices with respect to nestedness and negative species co‐occurrence. We examined the causal basis for the observed patterns and conducted separate analyses for the entire assemblage and for various species submatrices reflecting differences in species’ trophic position and mobility. Furthermore, we explored the influence of weighting factors (area, isolation, abundance) on co‐occurrence analyses. Unweighted analyses revealed a significant negative co‐occurrence pattern for the entire assemblage and for phytophagous bats alone. Weighting analyses by isolation retained a pattern of species segregation for the whole assemblage but nullified the non‐random structure for phytophagous bats and suggested negative associations for animalivores and species with low mobility. Area‐ and abundance‐weighted analyses always indicated random structuring. Bat distributions followed a nested subset structure across islands, regardless of whether all species or different submatrices were analysed. Nestedness was in all cases unrelated to island area but weakly correlated with island isolation for incidence matrices of all species, phytophagous bats, and mobile species. Overall, evidence for negative interspecific interactions indicative of competitive effects was weak, corroborating previous studies based on ecomorphological analyses. Our findings indicate that bat assemblages on our study islands are most strongly shaped by isolation effects and species’ differential movement and colonization ability. From a conservation viewpoint this suggests that even in systems with high fragment–matrix contrast, a purely area‐based approach may be inadequate, and structural and functional connectivity among patches are important to consider in reserve planning.  相似文献   

14.
Studying the diet of echolocating, insectivorous bats can provide important insights into their foraging behaviors and ecological constraints they are facing. By examining an extensive data set covering a period of 2 years, the present study identifies the dietary composition of three sympatric insectivorous bat species in rural areas of Beijing municipality. Each species clearly has different preferences for particular food items. Greater horseshoe bats, Rhinolophus ferrumequinum, preferred to catch nocturnal, actively flying insects, mostly moths (Lepidoptera), and to a lesser percentage flies (Diptera), beetles (Coleoptera), and flying ants and termites (Hymenoptera). Other nocturnal insects which do not exhibit any perceptible wing movements, such as true bugs (Homoptera), or strictly diurnal insects that hardly ever fly in the dark, such as grasshoppers (Orthoptera) and dragon- and damselflies (Odonata), were never found in droppings of horseshoe bats. Large mouse-eared bats, Myotis chinensis, preferentially glean relatively large terrestrial prey of the order Coleoptera (mostly carabid beetles) and Orthoptera, whereas greater tube-nosed bats, Murina leucogaster, consume predominantly smaller, diurnal Coleoptera (mostly soldier beetles, Cantharidae, and ladybugs, Coccinellidae). Our findings also indicate previously not described, significant spectro-temporal differences in the echolocation signals of M. chinensis and M. leucogaster. The results suggest that in our study area the dramatic differences in the dietary composition of these three bat species are mainly based upon differences in their foraging behaviors, including differences in their echolocation signal structure. The dietary data provide important background information for conservational efforts, such as habitat protection.  相似文献   

15.
Hagen EM  Sabo JL 《Oecologia》2011,166(3):751-760
River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.  相似文献   

16.
M. Ekman  J. de  Jong 《Journal of Zoology》1996,238(3):571-580
The local patterns of distribution and resource utilization of four bat species ( Myotis brandti, Eptesicus nilssoni, Plecotus auritus and Pipistrellus pipistrellus ) were examined in patchy and continuous environments, using bat detectors. The effects of two different kinds of open matrix habitats (crop-fields and water) on species occurrence were compared in the patchy areas. A crop-field matrix seemed to have a greater negative influence on species occurrence than a water matrix. Presence and absence of species in the patchy areas were analysed against island area, area of some habitats, and isolation. All species were positively affected by one or more forest habitat parameters. Two species ( M. brandti and P. auritus ) were negatively affected by isolation, which suggests that they may be particularly vulnerable to increased forest patchiness. These species occurred mainly on large islands. Two hypotheses that might explain the habit of open area avoidance in M. brandti and P. auritus were tested: 1. Insect abundance hypothesis; 2. Foraging behaviour hypothesis. Both failed to explain why these two species avoid open habitats and as a consequence are negatively affected by isolation.  相似文献   

17.
We determined habitat use by foraging bats by broad-band acoustic surveys in 10 habitat types from a Mediterranean area (southern Italy). We applied discriminant functions to identify time-expanded echolocation calls from free-flying bats.
Moon phase and cloud cover had no effect on bat activity. Only Hypsugo savii was influenced by temperature, and activity of Myotis daubentonii and Myotis capaccinii was reduced at higher wind speeds. Both total numbers of bat passes and feeding buzzes were highest over rivers and lakes. Pipistrellus kuhlii and H. savii were most frequently recorded. Pipistrellus kuhlii , Pipistrellus pipistrellus and Tadarida teniotis proved generalists in using foraging habitats.
Water sites and conifer plantations were respectively the most and the least used habitats by H. savii . Rivers were especially important to Myotis bats, Miniopterus schreibersii and Pipistrellus pygmaeus . Unlike P. kuhlii , P. pipistrellus was frequent in beech woodlands; P. pygmaeus made a considerable use of chestnut woodlands and Myotis spp. were moderately active in both these woodland types.
A large number of endangered or vulnerable species featured in riparian habitats, broadleaved woodlands and olive groves. Riparian and woodland habitats constitute an important target for conservation. Typical land use forms such as woodlands used for chestnut production and traditionally managed olive groves should be encouraged in conservation plans. The negative impact of urbanisation on bats might be counteracted by fostering trees, gardens and small cultivated patches. Farmland practices should encourage landscape complexity and limit the use of pesticides.  相似文献   

18.
Frick WF  Hayes JP  Heady PA 《Oecologia》2009,158(4):687-697
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.  相似文献   

19.
Threlfall CG  Law B  Banks PB 《PloS one》2012,7(6):e38800
Urban landscapes are often located in biologically diverse, productive regions. As such, urbanization may have dramatic consequences for this diversity, largely due to changes in the structure and function of urban communities. We examined the influence of landscape productivity (indexed by geology), housing density and vegetation clearing on the spatial distribution of nocturnal insect biomass and the foraging activity of insectivorous bats in the urban landscape of Sydney, Australia. Nocturnal insect biomass (g) and bat foraging activity were sampled from 113 sites representing backyard, open space, bushland and riparian landscape elements, across urban, suburban and vegetated landscapes within 60 km of Sydney's Central Business District. We found that insect biomass was at least an order of magnitude greater within suburban landscapes in bushland and backyard elements located on the most fertile shale influenced geologies (both p<0.001) compared to nutrient poor sandstone landscapes. Similarly, the feeding activity of bats was greatest in bushland, and riparian elements within suburbs on fertile geologies (p?=?0.039). Regression tree analysis indicated that the same three variables explained the major proportion of the variation in insect biomass and bat foraging activity. These were ambient temperature (positive), housing density (negative) and the percent of fertile shale geologies (positive) in the landscape; however variation in insect biomass did not directly explain bat foraging activity. We suggest that prey may be unavailable to bats in highly urbanized areas if these areas are avoided by many species, suggesting that reduced feeding activity may reflect under-use of urban habitats by bats. Restoration activities to improve ecological function and maintain the activity of a diversity of bat species should focus on maintaining and restoring bushland and riparian habitat, particularly in areas with fertile geology as these were key bat foraging habitats.  相似文献   

20.
Razgour O  Korine C  Saltz D 《Oecologia》2011,167(2):493-502
Bodies of water are a key foraging habitat for insectivorous bats. Since water is a scarce and limiting resource in arid environments, bodies of open water may have a structuring effect on desert bat communities, resulting in temporal or spatial partitioning of bat activity. Using acoustic monitoring, we studied the spatial and temporal activity patterns of insectivorous bats over desert ponds, and hypothesised that sympatric bat species partition the foraging space above ponds based on interspecific competitive interactions. We used indirect measures of competition (niche overlap and competition coefficients from the regression method) and tested for differences in pond habitat selection and peak activity time over ponds. We examined the effect of changes in the activity of bat species on their potential competitors. We found that interspecific competition affects bat community structure and activity patterns. Competing species partitioned their use of ponds spatially, whereby each species was associated with different pond size and hydroperiod (the number of months a pond holds water) categories, as well as temporally, whereby their activity peaked at different hours of the night. The drying out of temporary ponds increased temporal partitioning over permanent ponds. Differences in the activity of species over ponds in response to the presence or absence of their competitors lend further support to the role of interspecific competition in structuring desert bat communities. We suggest that habitat use and night activity pattern of insectivorous bats in arid environments reflect the trade-offs between selection of preferred pond type or activity time and constraints posed by competitive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号